You must show all of your work on the exam booklet to receive full credit. All communication devices such as cell phones are not allowed.

1. (15 points) Write $\cos \left(\sin ^{-1} u\right)$ as an algebraic expression in u.
2. (15 points) Find the exact value of
(a) $\sin ^{-1}\left(\sin \frac{5 \pi}{4}\right)$.
(b) $\cos \left[\cos ^{-1}(1.3)\right]$

For problem 3, side a is opposite angle A, side b is opposite angle B, side c is opposite angle C. Round all answers to two decimal places.
3. (15 points) Solve the triangle: $b=8, c=9, B=30^{\circ}$
4. (10 points) Find the area of the triangle: $a=8, b=4, C=70^{\circ}$
5. (15 points) Establish the given identity.

$$
\frac{1-\cos x}{\sin x}+\frac{\sin x}{1-\cos x}=2 \csc x
$$

6. (15 points) Let

$$
\begin{gathered}
\cos \alpha=\frac{1}{2}, \quad 0<\alpha<\frac{\pi}{2} \\
\sin \beta=-\frac{4}{5}, \quad-\frac{\pi}{2}<\beta<0
\end{gathered}
$$

Find the exact solution of $\sin (\alpha-\beta)$.
7. (15 points) Solve the equation.

$$
\cos ^{2} \theta=4(\sin \theta+1)
$$

Give a general formula of all solutions. Decimal approximations will not be accepted.

