Math 121 Review Problems for Chapter 9

Fall 2011

1. For the point $(r, \theta)=\left(\mathbf{3}, \frac{2 \pi}{3}\right)$, plot the point and then find other polar cordinates $(r, \boldsymbol{\theta})$ of the point for which (a) $r>0,-\mathbf{2 \pi} \leq \boldsymbol{\theta}<\mathbf{0}$ (b) $r>0,0 \leq \theta<2 \pi$ (c) $r<0,2 \pi \leq \theta<4 \pi$
2. Find the rectangular cordinates for each point. (a) $\left(\mathbf{6}, \frac{\mathbf{4 \pi}}{\mathbf{3}}\right.$) (b) $\left(-\mathbf{3},-\mathbf{3 4 6}^{\circ}\right)$
3. Find the polar coordinates for each point. (a) $(-\mathbf{7}, \mathbf{3})$ (b) $(-\mathbf{3 . 4}, \mathbf{- 2 . 6})$
4. Write the equation $\boldsymbol{x}^{2}=\mathbf{2} \boldsymbol{y}$ using polar coordinates.
5. Write the equation $\boldsymbol{r}=\mathbf{8} \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$ using rectangular coordinates.
6. Write each complex number in polar form. Use degrees. (a) $-9+9 i$ (b) $4-4 \sqrt{3} i$
7. Write each complex number in rectangular form.
(a) $2\left(\cos 330^{\circ}+i \sin 330^{\circ}\right)(\mathrm{b}) 0.3\left(\cos 240^{\circ}+i \sin 2340^{\circ}\right)$
8. Find $\boldsymbol{z} \cdot \boldsymbol{w}$ and $\boldsymbol{z} / \boldsymbol{w}$, and leave in polar form. $\boldsymbol{z}=\cos 110^{\circ}+i \sin 110^{\circ}, \quad w=\cos 10^{\circ}+i \sin 10^{\circ}$
9. Write $\mathbf{1 0 0}\left(\cos 8 \mathbf{0}^{\circ}+\boldsymbol{i} \sin 80^{\circ}\right)$ in standard form $a+b i$.
10. Find all of the complex cube roots of $\mathbf{- 4}$.
11. Find the position vector $\overrightarrow{\boldsymbol{v}}$ with initial point $\boldsymbol{P}=(4,9)$ and terminal point $(4,6)$.
12. Find $3 \vec{v}-2 \vec{w}$ if $\vec{v}=3 \vec{i}-7 \vec{j}$ and $\vec{w}=-5 \vec{i}+7 \vec{j}$.
13. Find $\|\vec{v}\|$ if $\vec{v}=-\mathbf{7} \vec{i}-\mathbf{6} \vec{j}$
14. Find the unit vector in the same direction as $\vec{v}=7 \vec{i}-4 \vec{j}$.
15. Find the vector $\overrightarrow{\boldsymbol{v}}$ whose magnitude is 7 and whose component in the $\overrightarrow{\boldsymbol{i}}$ direction is both positive and equal to the component in the $\overrightarrow{\boldsymbol{j}}$.
16. Find the vector $\overrightarrow{\boldsymbol{v}}$ given that the magnitude is 7 and the angle it makes with the ositive x -axis is $\alpha=225^{\circ}$.
17. Use the vectors $\vec{v}=4 \vec{i}+8 \vec{j}$ and $\vec{w}=-8 \vec{i}+4 \vec{j}$ to answer the folowing questions.
(a) Find the dot product.
(b) Find the angle (in degrees) between $\overrightarrow{\boldsymbol{v}}$ and $\overrightarrow{\boldsymbol{w}}$.
(c) Determine whether the vectors are parallel, orthogonal, or neither.
18. Determine \boldsymbol{b} so that vectors $\vec{v}=3 \vec{i}+\vec{j}$ and $\overrightarrow{\boldsymbol{w}}=\vec{i}+\boldsymbol{b} \vec{j}$ are orthogonal.
19. Use the vectors $\overrightarrow{\boldsymbol{v}}=-\boldsymbol{7} \vec{i}+\mathbf{9} \vec{j}$ and $\overrightarrow{\boldsymbol{w}}=\mathbf{5} \vec{i}+\mathbf{2} \vec{j}$ to decompose $\overrightarrow{\boldsymbol{v}}$ into two vectors $\vec{v}_{\mathbf{1}}$ and $\overrightarrow{\boldsymbol{v}}_{\mathbf{2}}$, where $\overrightarrow{\boldsymbol{v}}_{1}$ is parallel to $\overrightarrow{\boldsymbol{w}}$ and $\overrightarrow{\boldsymbol{v}}_{2}$ is orthogonal to $\overrightarrow{\boldsymbol{w}}$.
20. Find the distance from $\boldsymbol{P}_{\mathbf{1}}(\mathbf{1}, \mathbf{2}, \mathbf{3})$ to $\boldsymbol{P}_{\mathbf{2}}(\mathbf{4}, \mathbf{5}, \mathbf{6})$.
21. Find the position vector for $\boldsymbol{P}(\mathbf{2}, \mathbf{- 1}, \mathbf{3})$ and $\boldsymbol{Q}(\mathbf{0}, \mathbf{3}, \mathbf{- 4})$
22. If $\vec{v}=6 \vec{i}+2 \vec{j}+3 \vec{k}$ and $\vec{w}=-\vec{i}+5 \vec{j}-2 \vec{k}$ find:
(a) $\|\overrightarrow{\boldsymbol{v}}\|$
(b) $\overrightarrow{\boldsymbol{v}}+\overrightarrow{\boldsymbol{w}}$ (c) $\overrightarrow{\boldsymbol{v}}-\overrightarrow{\boldsymbol{w}}$
(d) $\mathbf{2 v}$ (e) $\mathbf{2} \overrightarrow{\boldsymbol{v}}+\mathbf{4} \overrightarrow{\boldsymbol{w}}$
23. Find the dot product for $\vec{v}=\vec{i}-\mathbf{j} \vec{j}+\mathbf{3} \vec{k}$ and $\overrightarrow{\boldsymbol{w}}=\mathbf{5} \overrightarrow{\boldsymbol{i}}+\mathbf{9} \overrightarrow{\boldsymbol{k}}$
24. find the angle between $\vec{v}=\vec{i}+2 \vec{j}+3 \vec{k}$ and $\vec{w}=4 \vec{i}-\vec{k}$
