Math 121 Exam II Lowman Fall 2013

<u>Calculators cannot be used</u>. In all problems show your work, put a box around your answer and clearly label it. Put your name, your TA's name, your discussion time, and your UIN on **both pages** of the exam. You can show your clearly labeled work on the back of either sheet.

$\boldsymbol{\theta}$ degrees	$\boldsymbol{\theta}$ radians	$\sin(heta)$	$\cos(heta)$	
0				
30				
45				
45				
60				
90				

1. (a) Fill in all boxes of the table with EXACT values.

(b) In the boxes complete the trigonometric identities as given in lectures

left side of identity	right side of identity
$\sin(x+y) =$	
$\cos(x+y) =$	
$\sin(2x) =$	
$\cos(2x) =$	
$\sin(x-\pi)$ in terms of $\sin(x)$ =	
half angle identity for $\cos^2(x) =$	

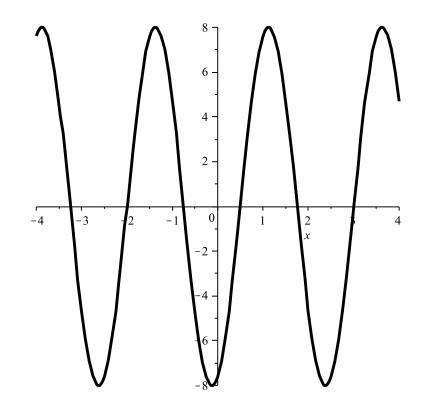
Show clearly labeled work for problems 2, 3, 4 and 5 on the back of the exam sheets.

- 2. If $\tan(\theta) = \frac{3}{2}$ and $\cos(\theta) < 0$, find $\sin(\theta)$ and $\cos(\theta)$.
- 3. Find all solutions to:

$$\frac{log_{9}(7)}{log_{9}(e)} + \frac{1}{5} \cdot \log_{4}(4^{5}) \cdot e^{x \cdot \ln(9)} - \ln(7) = 9^{(5-6/x)} \cdot \ln(e) + \ln(1) \cdot \cos(2x+1)$$

4. Solve for \boldsymbol{t} when \boldsymbol{P} is 3 times \boldsymbol{D} :

$$P = rac{D}{C \cdot e^{-rt} + 1}$$


Show all steps and box your answer.

- 5. A wheel with radius r = 15 in is rolling at a speed of $30 \ ft/sec$.
 - (a) What is $\boldsymbol{\omega}$ the *angular speed*, in radians per second?
 - (b) Convert your answer to **rpms** (rotations per minute).

Show all work, including units, for full credit. Give your answer in terms of π and reduce fractions when possible.

 $5280ft = 1mile, 1in = 2.54cm. 1km = 1000m, 1m = 100cm, 1 rotation = 2\pi radians = 360 degrees, 1min = 60sec.$

- 6. Given $y = A \sin(\omega(x x_0)) = A \sin(\omega x \phi)$ Find:
 - amplitude A = _____
 - period T =_____
 - angular frequency $\omega = \frac{2\pi}{T} =$ _____
 - phase shift $x_0 =$ _____
 - phase constant $\phi =$ _____
 - phase $\omega x \phi =$ _____

