Math 121 Fa13 Chapter 7 and 8
Name: \qquad TA: \qquad

Exam 3 Form B

1.) (4pts) Consider the function $f(x)=\tan ^{-1} x$
a. What is the domain?
b. What is the range?
2.) (4pts) Solve the given equation on the interval $0 \leq \theta \leq 2 \pi$: $\tan \theta-1=0$
3.) (8pts) $\operatorname{an} \theta=\frac{4}{3}, \pi \leq \theta \leq \frac{3 \pi}{2}$. Use this info to find:
a. $\cos (2 \theta)$
b. $\sin \left(\frac{\theta}{2}\right)$
4.) (12pts) Establish each identity. (Do NOT cross the equals sign).
a. $\sin \theta(\cot \theta+\tan \theta)=\sec \theta$
b. $\frac{\tan \theta-\cot \theta}{\tan \theta+\cot \theta}+2 \cos ^{2} \theta=1$
c. $\frac{\cos (\alpha+\beta)}{\cos \alpha \cos \beta}=1-\tan \alpha \tan \beta$
5.) (4pts) A straight trail with an inclination of 17° leads from a hotel at an elevation of 9000 feet to a mountain lake of an elevation of 11,200 feet. What is the length of the trail? (Degree mode)
6.) (20pts) Find the Exact value of each expression. (Radian Mode)
a. $\cos ^{-1}(1)$
b. $\sin ^{-1}\left(\sin \left(\frac{9 \pi}{4}\right)\right)$
c. $\sec \left(\tan ^{-1}(-3)\right)$
d. $\sec ^{-1}(5)$
e. $\cot ^{-1}\left(-\frac{3}{2}\right)$
7.) (12pts) Solve each triangle. (Degree Mode)
a. $\mathrm{A}=110^{\circ}, \mathrm{C}=30^{\circ}, \mathrm{c}=3$
b. $b=4, c=5, B=40^{\circ}$
c. $a=4, b=3, c=6$
8.) (8pts) Find the area of each triangle. (Round to two decimal place values)
a. $a=6, b=4, C=60^{\circ}$
b. $a=5, b=8, c=9$

