- 1. For the point $(r,\theta)=(3,\frac{2\pi}{3})$, plot the point and then find other polar coordinates (r,θ) of the point for which (a) $r>0,-2\pi\leq\theta<0$ (b) $r>0,0\leq\theta<2\pi$ (c) $r<0,2\pi\leq\theta<4\pi$
- 2. Find the rectangular coordinates for each point. (a) $(6, \frac{4\pi}{3})$ (b) $(-3, -346^o)$
- 3. Find the polar coordinates for each point. (a) (-7,3) (b) (-3.4,-2.6)
- 4. Write the equation $x^2 = 2y$ using polar coordinates.
- 5. Write the equation $r = 8\cos\theta$ using rectangular coordinates.
- 6. Write each complex number in polar form. Use degrees. (a) -9 + 9i (b) $4 4\sqrt{3}i$
- 7. Write each complex number in rectangular form. (a) $2(\cos 330^o + i \sin 330^o)$ (b) $0.3(\cos 240^o + i \sin 2340^o)$
- 8. Find $z \cdot w$ and z/w, and leave in polar form. $z = \cos 110^o + i \sin 110^o$, $w = \cos 10^o + i \sin 10^o$
- 9. Write $100(\cos 80^{\circ} + i \sin 80^{\circ})$ in standard form a + bi.
- 10. Find all of the complex cube roots of -4.
- 11. Find the position vector \vec{v} with initial point P = (4,9) and terminal point (4,6).
- 12. Find $3\vec{v} 2\vec{w}$ if $\vec{v} = 3\vec{i} 7\vec{j}$ and $\vec{w} = -5\vec{i} + 7\vec{j}$.
- 13. Find $||\vec{v}||$ if $\vec{v} = -7\vec{i} 6\vec{j}$
- 14. Find the unit vector in the same direction as $\vec{v} = 7\vec{i} 4\vec{j}$.
- 15. Find the vector \vec{v} whose magnitude is 7 and whose component in the \vec{i} direction is both positive and equal to the component in the \vec{j} .
- 16. Find the vector \vec{v} given that the magnitude is 7 and the angle it makes with the ositive x-axis is $\alpha = 225^{\circ}$.
- 17. Use the vectors $\vec{v} = 4\vec{i} + 8\vec{j}$ and $\vec{w} = -8\vec{i} + 4\vec{j}$ to answer the following questions.
 - (a) Find the dot product.
 - (b) Find the angle (in degrees) between \vec{v} and \vec{w} .
 - (c) Determine whether the vectors are parallel, orthogonal, or neither.
- 18. Determine **b** so that vectors $\vec{v} = 3\vec{i} + \vec{j}$ and $\vec{w} = \vec{i} + b\vec{j}$ are orthogonal.
- 19. Use the vectors $\vec{v} = -7\vec{i} + 9\vec{j}$ and $\vec{w} = 5\vec{i} + 2\vec{j}$ to decompose \vec{v} into two vectors \vec{v}_1 and \vec{v}_2 , where \vec{v}_1 is parallel to \vec{w} and \vec{v}_2 is orthogonal to \vec{w} .
- 20. Find the distance from $P_1(1, 2, 3)$ to $P_2(4, 5, 6)$.
- 21. Find the position vector for P(2,-1,3) and Q(0,3,-4)
- 22. If $\vec{v} = 6\vec{i} + 2\vec{j} + 3\vec{k}$ and $\vec{w} = -\vec{i} + 5\vec{j} 2\vec{k}$ find: (a) $||\vec{v}||$ (b) $\vec{v} + \vec{w}$ (c) $\vec{v} - \vec{w}$ (d) $2\vec{v}$ (e) $2\vec{v} + 4\vec{w}$
- 23. Find the dot product for $\vec{v} = \vec{i} 2\vec{j} + 3\vec{k}$ and $\vec{w} = 5\vec{i} + 9\vec{k}$
- 24. find the angle between $\vec{v} = \vec{i} + 2\vec{j} + 3\vec{k}$ and $\vec{w} = 4\vec{i} \vec{k}$