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ABSTRACT. We investigate questions of maximal symmetry in Banach spaces and the
structure of certain bounded non-unitarisable groups on Hilbert space. In particular, we
provide structural information about bounded groups with an essentially unique invari-
ant complemented subspace. This is subsequently combined with rigidity results for the
unitary representation of Aut(T ) on `2(T ), where T is the countably infinite regular
tree, to describe the possible bounded subgroups of GL(H) extending a well-known non-
unitarisable representation of F∞.

As a related result, we also show that a transitive norm on a separable Banach space
must be strictly convex.

1. INTRODUCTION

The research of the present paper aims to expand on a circle of ideas involving maximal
symmetry in Banach spaces and non-unitarisable representations in Hilbert space. Let
us recall that a subgroup G of the general linear group GL(X) of all continuous linear
automorphisms of a Banach space X is said to be bounded if G is a uniformly bounded
family of operators, i.e., supT∈G‖T‖ < ∞. In this case, X admits an equivalent G-
invariant norm, namely, |||x||| = supT∈G‖Tx‖. Thus, boundedness simply means that G
is a group of isometries for some equivalent norm on X . Also, G 6 GL(X) is maximal
bounded if it is not properly contained in another bounded subgroup of GL(X). Maximal
bounded groups naturally correspond to maximally symmetric norms on X , in the sense
that, if the isometry group of a specific norm is maximal bounded, in which case we say
the norm is maximal, then there is no manner of renorming X to obtain a strictly larger set
of isometries.

When X is finite-dimensional, every bounded G 6 GL(X) is contained in a maximal
bounded subgroup, namely, the unitary group of a G-invariant inner product on X . This
may be seen as an analogue of the Cartan–Iwasawa–Malcev theorem, i.e., the existence of
maximal compact subgroups in connected Lie groups. Also, in many of the classical spaces
such as, e.g., `p, the Hilbert space, or the space C([0, 1]) of complex continuous functions
on [0, 1], the canonical norm is maximal [15, 21, 25]. However, not every Banach space
admits an equivalent maximal norm, indeed, counter-examples may be found among super-
reflexive spaces [13]. Furthermore, as shown by S. J. Dilworth and B. Randrianantoanina
[9], even among classical spaces such as `p, 1 < p < ∞, p 6= 2, the general linear group
contains bounded subgroups not contained in a maximal bounded subgroup. The following
problem, which is the main motivation for our study, also remains stubbornly open.

Problem 1. Is every maximal norm on a Hilbert space H euclidean, i.e., generated by an
inner product?
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This problem is tightly related to two other issues in functional analysis, namely, the
existence of non-unitarisable bounded representations and S. Mazur’s rotation problem.
Here a bounded representation λ : Γ → GL(H) of a group Γ on a complex Hilbert space
H is said to be unitarisable if there is an equivalent λ(Γ)-invariant inner product onH, or,
equivalently, if λ is conjugate to a unitary representation onH. So Problem 1 is equivalent
to asking whether every maximal bounded subgroup of GL(H) is unitarisable.

As was shown by M. Day [7] and J. Dixmier [10], strongly continuous bounded repre-
sentations of amenable groups are always unitarisable. On the other hand, L. Ehrenpreis
and F. I. Mautner [11] constructed the first example of a non-unitarisable bounded rep-
resentation of a countable group Γ. In this connection, Dixmier posed the still central
problem of whether unitarisability of all bounded representations characterises amenable
groups among countable discrete groups. Now, by the Ehrenpreis–Mautner example, there
are bounded subgroups G 6 GL(H) of complex separable Hilbert space not preserving
any euclidean norm, but it remains an open question whether there are such G which are
maximal.

Note that while the isometry group of a maximal norm on a space X is maximal
bounded by definition, there may be several essentially distinct norms, i.e., not scalar mul-
tiplies of each other, with this same isometry group. One case where the norm is uniquely
defined by its isometry group is when the latter acts transitively on every sphere, in which
case, the norm is said to be transitive. This happens, for example, for Hilbert spaceH and
ultrapowers of Lp spaces with non-atomic measures. However, in the separable setting,
it is not known whether Hilbert space is the only such example either isomorphically or
isometrically. This is known as Mazur’s rotation problem [1, 19].

That the norm is uniquely defined (up to multiplicative constants) by its isometry group
actually follows from a weaker property of the isometry group, called almost transitivity.
A Banach space is almost transitive when the isometry group has dense orbits on spheres
(and a bounded subgroup G of automorphisms is almost transitive when every G-invariant
renorming is almost transitive). Classical examples are the Lp-spaces with non-atomic
measures, 1 6 p < ∞. Another is Gurarij’s space, where the isometry group acts transi-
tively on the smooth points of the sphere [17].

Of course, if some maximal non-euclidean norm on Hilbert space were obtained, the
next task would be to determine whether this norm is almost transitive or even transitive. So
Mazur’s rotation problem and the question of extension of non-unitarisable representations
on Hilbert space are also related.

To study Problem 1, we shall be considering the structure of bounded groups contain-
ing the image of one specific widely studied non-unitarisable representation associated
to actions on trees (see, e.g., [20, 22, 23]). For this, suppose that λ : Γ → U(H) is a
unitary presentation. A bounded derivation associated to λ is a uniformly bounded map
d : Γ → B(H) so that d(gf) = λ(g)d(f) + d(g)λ(f) for all g, f ∈ Γ. This is simply
equivalent to requiring that

λd(g) =

(
λ(g) d(g)

0 λ(g)

)

defines a bounded representation of Γ on H ⊕ H. The representation λd is unitarisable
exactly when d is inner, i.e., d(g) = λ(g)A− Aλ(g) for some bounded linear operator A
onH (see Section 3 for details).
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The principal aim of the present paper is to elucidate bounded groups G 6 GL(H⊕H)
containing λd[Γ] for λ and d as above, which are potential examples of maximal non-
unitarisable groups. Since λd[Γ] leaves the first copy of H in the decompostion H ⊕ H
invariant, in this context, it is natural to study G with the same property and we shall do
this in a broader setting. We now proceed to describe the main outcomes of our study.

In Section 2, we investigate the structure of bounded subgroups of GL(X), where X
is separable reflexive, which have a distinguished invariant subspace Y . More specifically,
supposing that X = Y ⊕ Z is a separable reflexive Banach space and G 6 GL(Y ⊕ Z) is
a bounded group of upper triangular block matrices(

u w
0 v

)
,

we first observe that, in this case,w is actually a function δ (or derivation) of u, v. However,
under stronger assumptions, we show that the diagonal entries u and v are also in a one-
to-one correspondence and so every element of G is uniquely determined by just the entry
u and similarly by v. Interestingly, derivations δ(u, v) involving a nonlinear homogeneous
map ψ show up naturally in this context.

Theorem 2. Let X = Y ⊕ Z be separable reflexive and G 6 GL(X) a bounded sub-
group leaving Y invariant. Assume that there are no closed linear G-invariant subspaces
{0}  W  Y nor superspaces Y  W  X and there is no closed linear G-invariant
complement of Y in X . Then the mappings(

u w
0 v

)
7→ u and

(
u w
0 v

)
7→ v

are sot-isomorphisms between G and the respective images in GL(Y ) and GL(Z).

In Section 3, we apply Theorem 2 whenG 6 GL(H⊕H) is a bounded subgroup leaving
the first copy of H invariant and containing the image λd[Γ], where λ is an irreducible
unitary representation and d is an associated non-inner derivation.

Corollary 3. Suppose that λ : Γ → U(H) is an irreducible unitary representation of a
group Γ on a separable Hilbert space H and d : Γ → B(H) is an associated non-inner
bounded derivation. Suppose that G 6 GL(H ⊕ H) is a bounded subgroup leaving the
first copy of H invariant and containing λd[Γ]. Then the mappings G → GL(H) defined
by (

u w
0 v

)
7→ u and

(
u w
0 v

)
7→ v

are sot-isomorphisms between G and the respective images in GL(H).

As additional information, in Proposition 15, we show that, if λd[Γ] is contained in
some almost transitive bounded subgroup of GL(H ⊕ H), then there is a homogeneous
Lipschitz map ψ : H → H defining the derivation by d(a) = λ(a)ψ − ψλ(a).

In Section 4, we turn to study one specific representation. For this, let T denote the ℵ0-
regular tree, i.e., the Cayley graph of the free group F∞ on denumerably many generators
with respect to its free generating set. Let also Aut(T ) denote its group of automorphisms.
We consider the representation λ : Aut(T ) y CT , i.e., the canonical shift action on the
vector space of C-valued functions on T , as well as the restriction of λ to a unitary repre-
sentation on `2(T ).

We observe that each of the subspaces `p(T ) ⊆ CT are λ-invariant, and prove rigidity
properties of this representation. While it is fairly easy to see that the unitary representa-
tion λ : Aut(T ) → U(`2(T )) is irreducible and uniquely unitarisable, i.e., up to a scalar
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multiple preserves a unique inner product equivalent with the usual one, we may show sig-
nificantly stronger results. Namely, in Theorem 20, we show that the usual inner product
〈·|·〉, up to a scalar multiple, is the only inner product (not necessarily equivalent to 〈·|·〉)
preserved by λ. Also, strengthening irreducibility, we have the following.

Theorem 4. The commutant of λ[Aut(T )] in the space of linear operators from `p(T ) to
CT , 1 < p 6∞, is just C·Id.

One unsolved issue (Problem 21) is whether there are bounded subgroups of GL(H)
containing λ[Aut(T )

]
and which are not unitarisable.

In Section 5, we describe a classical twisting of the representation λ producing a bounded
non-unitarizable representation λd of F∞, noting that it extends naturally to a representa-
tion of Aut(T ). To construct the derivation, fix a root e ∈ T and set ê = e, while for s ∈ T ,
s 6= e, we let ŝ denote the penultimate vertex on the geodesic in T from e to s. Also, let
L : `1(T ) → `1(T ) be the bounded linear operator satisfying L(1s) = 1ŝ for s 6= e and
L(1e) = 0. Then, if L∗ denotes the adjoint operator on `∞(T ), for every g ∈ Aut(T ),
d(g) = L∗λ(g) − λ(g)L∗ restricts to a linear operator on `2(T ) of norm 6 2 and agrees
with the operator λ(g)L− Lλ(g) on `1(T ). It follows that d defines a bounded derivation
associated to λ, which, however, is not inner. Moreover, with the aid of Theorem 4, we
show that this definition of d is extremely rigid.

Theorem 5. Let d be the derivation defined above and suppose A : `2(T ) → CT is a
globally defined linear operator so that d(g) = Aλ(g)− λ(g)A for all g ∈ Aut(T ). Then
A = L∗ + ϑId for some ϑ ∈ C.

Finally, we may combine the previous analysis of bounded subgroups with the specific
nature of the given derivation to obtain the following rigidity of structure result.

Theorem 6. Let d be the derivation defined above and suppose that G 6 GL(`2(T ) ⊕
`2(T )) is a bounded subgroup leaving the first copy of `2(T ) invariant and containing
λd[Aut(T )]. Then there is a homogeneous map ψ : `2(T )→ `2(T ), uniformly continuous
on bounded sets, for which

L∗ + ψ : `2(T )→ `∞(T ) and L− ψ : `1(T )→ `2(T )

commute with λ(g) for g ∈ Aut(T ) and so that every element of G is of the form(
u uψ − ψv
0 v

)
for some u, v ∈ GL(`2(T )).

Finally, the mappings(
u uψ − ψv
0 v

)
7→ u and

(
u uψ − ψv
0 v

)
7→ v

are sot-isomorphisms between G and their respective images in GL(`2(T )).

We subsequently use this result to compute some simple values of ψ, which could be
useful for extracting information about possible G. However, the following problem re-
mains open.

Problem 7. Let d be the derivation defined above. Is λd[Aut(T )] contained in some
maximal bounded subgroup of GL(`2(T ) ⊕ `2(T ))? Or even in some almost transitive
bounded subgroup of GL(`2(T )⊕ `2(T ))?
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The results of the Section 6 are independent of the rest of the paper and concern Mazur’s
rotation problem. Though much information has been obtained on almost transitive Banach
spaces under additional geometric assumptions such as reflexivity [5, 2], we are not aware
of any results that necessitate actual transitivity. Related to the present study, we show in
Theorem 28 that, if (X, ‖·‖) is a separable real transitive Banach space, then X is strictly
convex and ‖·‖ is Gâteaux differentiable. Let us remark that this result fails if X is only
assumed to be almost transitive, as can be seen by considering L1([0, 1]).

2. ON BOUNDED REPRESENTATIONS WITH INVARIANT SUBSPACES

In the following, we consider a separable reflexive Banach space X and a bounded
subgroup G 6 GL(X) along with a G-invariant closed linear subspace Y ⊆ X . We let
π : X → X/Y denote the canonical quotient map and write ẋ for π(x) = x+ Y ∈ X/Y .
Note also that every T ∈ G induces an operator Ṫ ∈ GL(X/Y ) defined by

Ṫ (ẋ) =
(
Tx
)�
,

i.e., Ṫ (x + Y ) = Tx + Y . Moreover, as ‖Ṫ (ẋ)‖ =
∥∥(Tx)�∥∥ 6 ‖Tx‖ 6 ‖T‖ · ‖x‖ for

all x ∈ X , we see that ‖Ṫ‖ 6 ‖T‖. In particular, Ġ = {Ṫ ∈ GL(X/Y )
∣∣ T ∈ G} is a

bounded subgroup of GL(X/Y ).
We recall a few facts about the nearest point map in Banach spaces. If X is reflexive

with a strictly convex norm, then, for any non-empty closed convex subset C of X , the
nearest point map c : X → C given by

c(x) = the unique point y ∈ C closest to x

is well-defined (see Exercise 7.46 [12]). If in addition the norm is locally uniformly convex
(LUR), then c is continuous (Exercise 7.47 [12]), and, if it is uniformly convex, then c is
uniformly continuous on bounded neighbourhoods of C (Lemma 2.5 [3]). If the modulus
of convexity of the norm has power type p, then the associated modulus of continuity
satisfies ω(ε) 6 cε1/p. Moreover, this may be improved to ω(ε) 6 cεq/p if the modulus of
smoothness of the norm has power type q (Theorem 2.8 [3]).

We note also for future reference that, if ‖·‖ is a uniformly convex norm on X , then the
G-invariant equivalent norm |||x||| = supT∈G‖Tx‖ is also uniformly convex. Furthermore,
if ‖·‖ has modulus of convexity of power type p, then so will ||| · ||| (see, e.g., Lemma 1.1
[6]).

Lemma 8. Let X be a separable reflexive Banach space, G 6 GL(X) a bounded sub-
group and suppose that Y ⊆ X is a G-invariant closed linear subspace. Then there is a
continuous, homogeneous and thus bounded G-equivariant lifting φ : X/Y → X of the
quotient map π, that is, π ◦ φ = IdX/Y and φṪ = Tφ for all T ∈ G.

Proof. First, by results of G. Lancien [16], sinceX is separable reflexive andG 6 GL(X)
is bounded, there is an equivalent G-invariant LUR norm ‖·‖ on X . In other words, G is a
subgroup of the group Isom(X, ‖·‖) of linear isometries of X, ‖·‖.

Now, since X is reflexive and ‖·‖ is LUR, the Y -nearest point map c : X → Y is well-
defined and continuous. Note then that, for every x ∈ X , x − c(x) is the unique point in
x + Y of minimal norm. Let b : X/Y → X be a Bartle–Graves selector (see Corollary
7.56 [12]), that is, b is a continuous lifting of the quotient mapping π : X → X/Y . We
then let φ : X/Y → X be defined by φ(z) = b(z) − c(b(z)) and note that, for x ∈ X ,
φ(ẋ) is the unique point of minimal norm in the affine subspace x+ Y ⊆ X .
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Suppose that x ∈ X and T ∈ G. Then, since T [Y ] = Y and T is a linear isometry of
X ,

φ(Ṫ ẋ) = φ
(
(Tx)�

)
= the unique point in Tx+ Y of minimal norm

= the unique point in T [x+ Y ] of minimal norm

= T
(
the unique point in x+ Y of minimal norm

)
= Tφ(ẋ).

Thus, φṪ = Tφ for all T ∈ G, i.e., φ is a continuous G-equivariant lifting of the quotient
map. Similarly, for x ∈ X and λ a scalar,

φ(ẋ) = x⇔ ∀y ∈ Y ‖x‖ 6 ‖x+ y‖
⇔ ∀y ∈ Y ‖λx‖ 6 ‖λ(x+ y)‖
⇔ ∀y ∈ Y ‖λx‖ 6 ‖λx+ y‖
⇔ φ(λẋ) = λx,

whence φ is homogeneous. Finally, let us also note that ‖φ(ẋ)‖ = ‖ẋ‖ for all x ∈ X . �

We observe that in Lemma 8, if ‖·‖ denotes the original norm onX , then φmay be cho-
sen of norm at most (1 + ε) supT∈G‖T‖, for any choice of ε > 0. This easily follows from
the construction of a G-invariant LUR norm on X . Indeed, define |||x||| = supT∈G‖Tx‖,
and let ||| · |||′ be an equivalent LUR norm for which

Isom(X, ||| · |||) 6 Isom(X, ||| · |||′).

By density of the LUR property in the space of G-invariant norms (Proposition 4.5 [13]),
||| · |||′ may be chosen so that ||| · ||| 6 ||| · |||′ 6 (1 + ε)||| · |||. Letting φ denote the lifting of
Lemma 8, we have |||φ(ẋ)|||′ = |||ẋ|||′ and thus

‖φ(ẋ)‖ 6 |||φ(ẋ)||| 6 |||φ(ẋ)|||′ = |||ẋ|||′ 6 (1 + ε)|||ẋ||| 6 (1 + ε)
(

sup
T∈G
‖T‖

)
‖ẋ‖.

for all x ∈ X . This estimate may be improved by dropping the continuity property.

Lemma 9. Let X be a separable reflexive Banach space, G 6 GL(X) a bounded sub-
group and suppose that Y ⊆ X is a G-invariant closed linear subspace. Then there exists
a homogeneous G-equivariant lifting φ : X/Y → X of the quotient map π with norm at
most supT∈G ‖T‖.

Proof. By the above remark, let φn be a homogeneousG-equivariant lifting associated to a
choice of equivalentG-invariant LUR renorming ‖·‖n of norm at most (1+ 1

n ) supT∈G ‖T‖.
Use reflexivity to define, for all ẋ ∈ X/Y , φ(ẋ) as a weak limit along a non-trivial ultra-
filter,

φ(ẋ) = w − lim
n→U

φn(ẋ).

It is easily checked that φ is a homogeneous G-equivariant lifting of π of norm at most
supT∈G ‖T‖. �

Note that, if φ is the lifting defined by Lemma 8, then p : X → Y given by p(x) =
x − φ(ẋ) is a continuous homogeneous (potentially non-linear) projection of X onto its
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subspace Y . Moreover, in this case, we can define a homogeneous homeomorphism be-
tween X and Y ⊕X/Y via x 7→ (p(x), ẋ) with homogeneous inverse (y, z) 7→ y + φ(z).
By the G-equivariance of φ, we also have

Tx 7→ (Tx− φ(Ṫ ẋ), Ṫ ẋ) = (Tx− Tφ(ẋ), Ṫ ẋ) =
(
(T |Y )(p(x)), Ṫ ẋ

)
,

which shows that the action of G on X is conjugate by the above homeomorphism to the
G-action on Y ⊕X/Y given by the block diagonal representation

T 7→
(
T |Y 0

0 Ṫ

)
.

Lemma 10. Let X be a separable reflexive Banach space, G 6 GL(X) a bounded sub-
group and suppose that Y ⊆ X is aG-invariant closed linear subspace. Then the mapping

T 7→
(
T |Y 0

0 Ṫ

)
is an injective homomorphism of G into GL(Y ⊕X/Y ).

Proof. Assume T ∈ G satisfies T |Y = IdY and Ṫ = IdX/Y . Then T acts as the identity
on Y ⊕X/Y and, since the action ofG onX is conjugate by homeomorphism to the action
of G on Y ⊕X/Y , we deduce that T = Id. �

Theorem 11. LetX be a separable reflexive Banach space andG 6 GL(X) be a bounded
subgroup. Suppose that Y ⊆ X is a G-invariant closed linear subspace so that

(i) there is no closed linear G-invariant subspace {0}  W  Y ,
(ii) there is no closed linear G-invariant complement of Y in X .

Then the mapping T 7→ Ṫ is an isomorphism of the topological groups (G, sot) and
(Ġ, sot).

Proof. Let φ : X/Y → X be the lifting given by Lemma 8. Define ∆: X/Y ×X/Y → X
by ∆(ẋ1, ẋ2) = φ(ẋ1) + φ(ẋ2) − φ(ẋ1 + ẋ2) and observe that, since φ(ẋ1) ∈ x1 + Y ,
φ(ẋ2) ∈ x2 + Y and φ(ẋ1 + ẋ2) ∈ (x1 + x2) + Y , we have ∆(ẋ1, ẋ2) ∈ Y . Moreover,
by G-equivariance of φ, we find that

T∆(ẋ1, ẋ2) = Tφ(ẋ1) + Tφ(ẋ2)− Tφ(ẋ1 + ẋ2)

= φ(Ṫ ẋ1) + φ(Ṫ ẋ2)− φ(Ṫ ẋ1 + Ṫ ẋ2)

= ∆(Ṫ ẋ1, Ṫ ẋ2)

for all T ∈ G and x1, x2 ∈ X .
We claim that ∆(ẋ1, ẋ2) 6= 0 for some x1, x2 ∈ X . Indeed, suppose not. Then φ is

a bounded linear G-equivariant map, whereby the composition P = φ ◦ π is a bounded
linear projection with kerP = Y satisfying

PT (x) = φπ(Tx) = φ
(
Ṫ ẋ) = Tφ(ẋ) = TP (x)

for all x ∈ X , i.e., PT = TP . So W = P [X] is a G-invariant closed linear complement
of Y in X , contradicting our assumption.

Thus, as 0 6= ∆(ẋ1, ẋ2) ∈ Y and there are no non-trivial G-invariant closed linear
subspaces of Y , we see that span

(
G ·∆(ẋ1, ẋ2)

)
= Y .

We claim that, for all Tn, T ∈ G, we have

Tn−→
sot

T ⇔ Ṫn−→
sot

Ṫ .
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The implication from left to right is obvious. For the other direction, assume that Ṫn−→
sot

Ṫ .
Suppose first that S ∈ G is given. Then, since φ and hence also ∆ are continuous, we have

lim
n
TnS∆(ẋ1, ẋ2) = lim

n
∆(ṪnṠẋ1, ṪnṠẋ2) = ∆(Ṫ Ṡẋ1, Ṫ Ṡẋ2) = TS∆(ẋ1, ẋ2).

As span
(
G ·∆(ẋ1, ẋ2)

)
= Y and G is a group of isometries, this shows that Tny → Ty

for all y ∈ Y .
Let now x ∈ X be given and write x = φ(ẋ) + y for some y ∈ Y . Then, since φ is

continuous and G-equivariant, we have

Tnx = Tnφ(ẋ) + Tny = φ(Ṫnẋ) + Tny −→
n

φ(Ṫ ẋ) + Ty = Tφ(ẋ) + Ty = Tx,

which shows that Tn−→
sot

T .

Since T → Ṫ is clearly a group homomorphism, this shows that it is an isomorphism
of the topological groups (G, sot) and (Ġ, sot). �

Corollary 12. Let X be a separable reflexive Banach space and G 6 GL(X) be a
bounded subgroup. Suppose that Y ⊆ X is a G-invariant closed linear subspace so
that

(i) there is no closed linear G-invariant superspace Y  W  X ,
(ii) there is no closed linear G-invariant complement of Y in X .

Then the mapping T 7→ T |Y is an isomorphism of the topological groups (G, sot) and
(G|Y , sot), where G|Y = {T |Y ∈ GL(Y )

∣∣ T ∈ G}.
Proof. As in the proof of Theorem 11, we may assume that G is a group of isometries of
X .

Note that the short exact sequence

0→ Y → X → X/Y → 0

gives rise to the short exact sequence

0→ Y ⊥ → X∗ → X∗/Y ⊥ → 0

by duality.
We set G∗ = {T ∗ ∈ GL(X∗)

∣∣ T ∈ G}. Then any G∗-invariant subspace {0}  V  
Y ⊥ would induce a G-invariant subspace Y  W  X by W = V⊥. Similarly, a G∗-
invariant complement V of Y ⊥ in X∗ would induce a G-invariant complement W = V⊥
of Y in X . Therefore, we see that G∗ and X∗ satisfy the conditions of Theorem 11,
which means that the map T ∗ ∈ G∗ 7→ (T ∗)� ∈ Isom(X∗/Y ⊥) is an isomorphism of the
topological group (G∗, sot) with its image in

(
Isom(X∗/Y ⊥), sot

)
.

Now, sinceX is reflexive, the map T 7→ T ∗ is an isomorphism of
(
Isom(X), sot

)
with(

Isom(X∗), sot
)
. Similarly, as X∗/Y ⊥ can be identified with Y ∗ via Hahn–Banach, we

again have an isomorphism between
(
Isom(X∗/Y ⊥), sot

)
and

(
Isom(Y ), sot

)
. More-

over, the composition of these three maps shows that T 7→ T |Y is an isomorphism between
(G, sot) and (G|Y , sot). �

Corollary 13. Let X be a separable reflexive Banach space and G 6 GL(X) be a
bounded subgroup. Suppose that Y ⊆ X is a G-invariant closed linear subspace so
that

(i) there are no closed linear G-invariant subspaces {0}  W  Y nor superspaces
Y  W  X ,

(ii) there is no closed linear G-invariant complement of Y in X .
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Then the mapping T |Y 7→ Ṫ is well-defined and provides an isomorphism between the
topological groups (G|Y , sot) and (Ġ, sot).

Now, returning to our original assumptions, we suppose that X is a separable reflexive
Banach space and G 6 GL(X) is a bounded subgroup preserving a closed linear subspace
Y ⊆ X . Suppose furthermore that Y is complemented in X , i.e., that we may write
X = Y ⊕Z for some closed linear subspace Z ⊆ X . Since Y is G-invariant, with respect
to the decomposition X = Y ⊕ Z, every element T ∈ G may be represented by a block
matrix (

uT wT
0 vT

)
,

where uT ∈ GL(Y ), vT ∈ GL(Z) andwT is a bounded linear operator from Z to Y . Also,
uT is simply the restriction T |Y . Moreover, the quotient map π : X → X/Y restricts to
an isomorphism between Z and X/Y and we note that the operator Ṫ ∈ GL(X/Y ) is
conjugate to vT via this isomorphism. So henceforth, we shall simply identify X/Y with
Z and Ṫ with vT .

By Lemma 10, every element of G is represented by a block matrix(
u δ(u, v)
0 v

)
,

where δ(u, v) : Z → Y is a bounded linear operator uniquely determined as a function of
u and v. As(

u1 δ(u1, v1)
0 v1

)(
u2 δ(u2, v2)
0 v2

)
=

(
u1u2 u1δ(u2, v2) + δ(u1, v1)v2

0 v1v2

)
,

we find that
δ(u1u2, v1v2) = u1δ(u2, v2) + δ(u1, v1)v2.

Lemma 14. Let X = Y ⊕Z be separable reflexive and G 6 GL(X) a bounded subgroup
leaving Y invariant. Then there is a continuous homogeneous map ψ : Z → Y so that

δ(u, v) = uψ − ψv.
If X is superreflexive, then ψ may be chosen to be uniformly continuous on bounded sets.

Proof. Suppose that φ : Z → X is the G-equivariant continuous homogeneous lifting of
the canonical projection π : Y ⊕ Z → Z given by Lemma 8. Then we may write

φ(z) =

(
−ψ(z)
z

)
for some continuous homogeneous ψ : Z → Y . Now, for

T =

(
u δ(u, v)
0 v

)
∈ G,

we have, by the G-equivariance of φ and the identification Ṫ = v, that φv = Tφ, i.e.,(
−ψv(z)
v(z)

)
= φv(z) = Tφ(z) =

(
u δ(u, v)
0 v

)(
−ψ(z)
z

)
=

(
−uψ(z) + δ(u, v)(z)

v(z)

)
for all z ∈ Z. In other words, −uψ + δ(u, v) = −ψv or equivalently δ(u, v) = uψ − ψv.

If X is superreflexive, then let ‖·‖ be a uniformly convex norm on X and recall that
the G-invariant norm |||x||| = supT∈G‖Tx‖ is uniformly convex on X . The nearest point
map c(x) to x in Y considered in the proof of Lemma 8 is then uniformly continuous
on bounded sets. Also, since Y is complemented, the Bartle-Graves selector b used in
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Lemma 8 may be simply chosen to be the identity (modulo the identification of X/Y with
Z). Therefore, according to the definition of φ in Lemma 8, φ and therefore also ψ are
uniformly continuous on bounded sets. �

Now, if G 6 GL(Y ⊕ Z) a bounded subgroup leaving Y invariant, we set

U = {u ∈ GL(Y )
∣∣ ∃v ∈ GL(Z)

(
u δ(u, v)
0 v

)
∈ G}

and

V = {v ∈ GL(Z)
∣∣ ∃u ∈ GL(Y )

(
u δ(u, v)
0 v

)
∈ G}

and note that these are bounded subgroups of GL(Y ) and GL(Z) respectively.
Specialising Theorem 11 and Corollary 12 to the setting above, we obtain our first main

result.

Theorem 2. LetX = Y ⊕Z be separable reflexive andG 6 GL(X) a bounded subgroup
leaving Y invariant. Assume that

(i) there are no closed linear G-invariant subspaces {0}  W  Y nor superspaces
Y  W  X ,

(ii) there is no closed linear G-invariant complement of Y in X .
Then the mappings (

u δ(u, v)
0 v

)
7→ u

and (
u δ(u, v)
0 v

)
7→ v

are topological group isomorphisms between (G, sot) and (U, sot), respectively (G, sot)
and (V, sot).

3. DERIVATIONS AND NON-UNITARISABLE REPRESENTATIONS

In this section, we apply our results from Section 2 to the special case of Hilbert space,
that is, we assume that Y = Z = H, whereH is the separable infinite-dimensional Hilbert
space. For this, we shall briefly review how to twist a unitary representation to obtain a
non-unitarisable bounded representation.

So suppose that λ : Γ → U(H) is a unitary representation of a group Γ on a separable
infinite-dimensional Hilbert spaceH. A derivation associated to λ is a map d : Γ→ B(H),
where B(H) is the algebra of bounded linear operators on H, satisfying the cocycle equa-
tion

d(ab) = λ(a)d(b) + d(a)λ(b)

for all a, b ∈ Γ. Letting H1 and H2 denote two copies of H, this equation is simply
equivalent to the requirement that the map λd : Γ→ GL(H1 ⊕H2) given by

λd(a) =

(
λ(a) d(a)

0 λ(a)

)
defines a representation, i.e., λd(ab) = λd(a)λd(b). Moreover, this representation is
bounded if and only if d is bounded, i.e., supa∈Γ‖d(a)‖ <∞.

Let us recall the equivalence of the following statements for a bounded derivation d
associated to λ.

(i) λd : Γ→ GL(H1 ⊕H2) is unitarisable,
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(ii) d is inner, that is, there is a bounded linear operator L ∈ B(H) with d(a) =
λ(a)L− Lλ(a),

(iii) there is a closed linear complement K of H1 in H1 ⊕ H2 invariant under the
representation λd : Γ→ GL(H1 ⊕H2).

To see this, suppose first that K is a closed linear λd-invariant complement of H1 in
H1 ⊕ H2 and let P be the projection onto H1 along K. By the λd-invariance of K, P
commutes with λd(a) for all a ∈ Γ. So, viewing d(a) as an operator from H2 to H1, for
all x ∈ H2, we have

d(a)x+ Pλ(a)x = Pd(a)x+ Pλ(a)x = Pλd(a)x = λd(a)Px = λ(a)Px,

i.e., d(a)x = λ(a)Px−Pλ(a)x. Letting L be the restriction of P toH2, we thus find that
d(a) = λ(a)L− Lλ(a) for all a ∈ Γ and therefore d is an inner derivation.

Also, if d is inner and thus d(a) = λ(a)L− Lλ(a) for some bounded operator L, then,
for all a ∈ Γ, we have(

λ(a) d(a)
0 λ(a)

)
=

(
Id −L
0 Id

)(
λ(a) 0

0 λ(a)

)(
Id L
0 Id

)
,

which shows that λd : Γ→ GL(H1 ⊕H2) is similar to a block diagonal unitary represen-
tation and hence is unitarisable.

Finally, by the complete reducibility of unitary representations, if the representation
λd : Γ → GL(H1 ⊕ H2) is unitarisable, the λd-invariant subspace H1 has a λd-invariant
complement K inH1 ⊕H2.

We may now apply the results of Section 2 in this setting.

Corollary 3. Suppose that λ : Γ → U(H) is an irreducible unitary representation of a
group Γ on a separable infinite-dimensional Hilbert space H and d : Γ → B(H) is an
associated non-inner bounded derivation. Let also H1 and H2 be distinct copies of H
and suppose that G 6 GL(H1 ⊕ H2) is a bounded subgroup leaving H1 invariant and
containing λd[Γ]. Then the mappings G→ GL(H) defined by(

u δ(u, v)
0 v

)
7→ u

and (
u δ(u, v)
0 v

)
7→ v

are topological group isomorphisms between (G, sot) and (U, sot), respectively (G, sot)
and (V, sot). Furthermore there is a homogeneous map ψ : H2 → H1, uniformly contin-
uous on bounded sets, such that

δ(u, v) = uψ − ψv.

Proof. First, by irreducibility of λ, there is no closed linear λd-invariant subspace {0}  
K  H1. Also, since d is not inner, there is no λd-invariant closed linear complement of
H1 inH1 ⊕H2.

We also claim that there is no closed linear λd-invariant superspace H1  K  H1 ⊕
H2, as otherwise, K ∩ H2 would be λ-invariant, contradicting the irreducibility of λ. In-
deed, suppose that x ∈ K ∩ H2. Then λd(a)x = d(a)x + λ(a)x ∈ K, whereby, as
d(a)x ∈ H1 ⊆ K and λ(a)x ∈ H2, also λ(a)x ∈ K ∩H2.

Now, since G contains λd[Γ], it follows that there are no G-invariant subspaces of the
above type. Therefore, G satisfies the conditions of Lemma 14 and Theorem 2, whereby
our result follows. �
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Note that, if G is as above, then |||x||| = supg∈G‖g(x)‖ defines a G-invariant norm on
H1 ⊕H2 with modulus of convexity of power type 2. Similarly, |||x∗||| = supg∈G‖g(x∗)‖
defined on

(
H1⊕H2

)∗
has modulus of convexity of power type 2, whereby itsG-invariant

dual norm has modulus of smoothness of power type 2. Whether there exists a G-invariant
norm onH1⊕H2 combining the two properties is unclear and turns out to be tightly related
to the structure of G:

Proposition 15. Suppose that λ : Γ → U(H) is a unitary representation of a group Γ
on a separable infinite-dimensional Hilbert space H and let d be a bounded derivation
associated to λ. Consider the assertions

(i) there is an almost transitive bounded subgroup G of GL(H1 ⊕ H2) containing
λd[Γ],

(ii) there is a λd[Γ]-invariant norm onH1⊕H2 with moduli of convexity and smooth-
ness of power type 2,

(iii) there is a λd[Γ]-invariant norm on H1 ⊕ H2 such that the H1-nearest point map
H1 ⊕H2 → H1 is well-defined and Lipschitz,

(iv) there is a homogeneous Lipschitz map ψ : H2 → H1 such that d(a) = λ(a)ψ −
ψλ(a),

(v) the group λd[Γz] is unitarisable for z outside of a Gauss null subset ofH2, where
Γz = {a ∈ Γ

∣∣ λ(a)(z) = z}.
Then (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v).

Proof. (i)⇒(ii): As observed by F. Cabello-Sanchez (Corollary 1.3 [6], see also the paper
of C. Finet [14]), since there exists a norm with modulus of convexity of power type 2 on
H1⊕H2, any G-invariant norm has the same property. The same holds for the modulus of
smoothness (Corollary 1.6 [6]). In particular there is a λd[Γ]-invariant norm on H1 ⊕H2

whose moduli of convexity and smoothness are both of power type 2.
(ii)⇒(iii): According to Theorem 2.8 [3] (see also the beginning of the proof of The-

orem 2.9 [3]), if a norm has moduli of convexity and smoothness of power type equal to
2, then the C-nearest point map is Lipschitz on the set {x ∈ H1 ⊕ H2

∣∣ d(x,C) 6 1},
whenever C is a non-empty closed convex subset of H1 ⊕H2. If C = H1, then this map
is also homogeneous and therefore Lipschitz onH1 ⊕H2.

(iii)⇒(iv): Since the H1-nearest point map c is Lipschitz and since the Bartle–Graves
selector b may be chosen to be linear continuous, the λd[Γ]-equivariant lifting φ : H2 →
H1 ⊕H2 defined in Lemma 8 is Lipschitz. It follows that the map ψ : H2 → H1 defined
in Lemma 14 such that d(a) = λ(a)ψ − ψλ(a) is Lipschitz.

(iv)⇒(v): If ψ is Lipschitz, it is Gâteaux differentiable outside of a Gauss null subset
of H2, [3] Theorem 6.42 (recall that A is Gauss null if it has measure 0 for any non
degenerate Gaussian measure on H2). Let z be a point of Gâteaux differentiability of ψ.
Then the relation

d(a) = λ(a)ψ − ψλ(a)

differentiates in z as
d(a) = λ(a)ψ′(z)− ψ′

(
λ(a)z

)
λ(a).

We deduce that the derivation associated to the restriction of λ to Γz is inner, i.e., the
subgroup λd(Γz) is unitarisable. �

An interesting and unsolved problem is whether linearisation techniques of Lipschitz
maps could be used to show that a derivation d satisfying (iv) actually has to be inner.
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It is an open question of Deville, Godefroy and Zizler [8] whether a Banach space X ,
which has an equivalent norm with modulus of convexity of type p > 2 and another equiva-
lent norm with modulus of smoothness of type 1 6 q 6 2, should have an equivalent norm
with both of these properties. Proposition 15 suggests an approach for the similar ques-
tion concerning G-invariant norms on the Hilbert space, for different choices of bounded
subgroups G of GL(H) - of course, if G is unitarisable, then the answer is trivially yes.

4. THE REPRESENTATION OF Aut(T ) ON `2(T )

In the following, we let T denote the ℵ0-regular tree, that is, the countable connected,
symmetric, irreflexive graph without loops in which every vertex has infinite valence. One
particular realisation of T is as the Cayley graph of the free group on a denumerable set
of generators, F∞, with respect to its free generating set. We also let λ denote the unitary
representation of its automorphism group, Aut(T ), on the vector space CT of C-valued
functions on T given by

λ(g)(x) = x(g−1 ·),
for g ∈ Aut(T ) and x ∈ CT , and note that the linear subspaces `p(T ), 1 6 p 6 ∞,
and c0(T ) ⊆ CT are λ[Aut(T )]-invariant. The same holds for the space c00(T ) of finitely
supported functions. Let also Gt = Aut(T, t) denote the isotropy subgroup of the vertex
t ∈ T and, for a subset A ⊆ T , set GA =

⋂
t∈AGt and let CA and `p(A) denote the

subspaces of vectors whose support is included in A. We set 1t ∈ CT to be the Dirac
function at the vertex t ∈ T .

We begin by two elementary observations that will be significantly strengthened later
on.

Proposition 16. The unitary representation λ : Aut(T )→ U(`2(T )) is irreducible.

Proof. Note that, since every vertex s 6= t has infinite orbit in T under the action of Gt,
C1t ⊆ `2(T ) is the 1-dimensional subspace of λ[Gt]-invariant vectors. Now, if `2(T ) =
H⊕H⊥ were a λ[Aut(T )]-invariant decomposition of `2(T ), the orthogonal projection P
ontoH would commute with λ[Aut(T )] and so, in particular, λ(g)P1t = Pλ(g)1t = P1t
for all g ∈ Gt, i.e., P1t is λ[Gt]-invariant. It follows that P1t ∈ C1t ∩ H and so either
1t ∈ H⊥ or 1t ∈ H. But, as λ[Aut(T )]1t spans `2(T ), we see by the invariance of H⊥
andH that eitherH⊥ = `2(T ) orH = `2(T ), showing irreducibility. �

Proposition 17. λ : Aut(T ) → U(`2(T )) is uniquely unitarisable, i.e., up to a scalar
multiple, there is a unique λ-invariant inner product on `2(T ) equivalent with the usual
inner product.

Proof. Fix s ∈ T and enumerate the neighbours of s in T as {. . . , t1, t0, t1, . . .}. Pick a
sequence of automorphisms g1, g2, g3, . . . ∈ Gs so that gn(ti) = ti+n for all n > 1 and
i ∈ Z. Then λ(gn)−→

wot
Ps, where Ps denotes the usual orthogonal projection onto C1s.

Note that `2(T \{s}) is a closed linear λ[Gs]-invariant complement ofC1s. On the other
hand, if H ⊆ `2(T ) is any other closed linear λ[Gs]-invariant complement of C1s, then
Psx = w−limλ(gs)x belongs to C1s∩H = {0} for all x ∈ H, wherebyH ⊆ `2(T \{s})
and hence H = `2(T \ {s}). It follows that `2(T \ {s}) is the unique λ[Gs]-invariant
closed linear complement of C1s in `2(T ).

Now, suppose 〈·|·〉 denotes the usual inner product on `2(T ) and 〈·|·〉′ is another λ[Aut(T )]-
invariant equivalent inner product on `2(T ). Then, for every s ∈ T , the orthogonal com-
plement (C1s)⊥

′
is a closed linear λ[Gs]-invariant complement of C1s, so (C1s)⊥

′
=

`2(T \ {s}) = (C1s)⊥, whereby 〈1s|1t〉′ = 0 for all s 6= t in T .
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Since λ[Aut(T )] acts transitively on {1s}s∈T , we also see that 〈1s|1s〉′ = 〈1t|1t〉′ for
all s, t ∈ T . So, up to multiplication by a scalar, we have 〈·|·〉 = 〈·|·〉′. �

We shall now significantly improve the preceding two results by removing any assump-
tions of continuity. For this, recall that an isometric linear representation α : Γ y X of a
group Γ on a Banach space X is said to have almost invariant unit vectors if, for all ε > 0
and finite sets F ⊆ Γ, there is a non-zero x ∈ X with

max
g∈F
‖x− λ(g)x‖ < ε‖x‖.

Lemma 18. For all t ∈ T and 1 6 p < ∞, there are no almost λ[Gt]-invariant unit
vectors in `p(T \ {t}).

Proof. Fix a countable non-amenable group Γ, a vertex t ∈ T and enumerate the neigh-
bours of t in T by the elements of Γ. Also, for every a ∈ Γ, let Ta denote the subtree of
all vertices s ∈ T whose geodesic to t passes through a. So the rooted trees {(Ta, a)}a∈Γ

are all isomorphic to some fixed rooted tree (T ′, r) and we can therefore identify T \ {t}
with T ′ × Γ in such a way that each Ta is identified with T ′ × {a} via the aforementioned
isomorphism. Moreover, if we define an action ρ : Γ y `p(T

′ × Γ) by letting Γ shift the
second coordinate, it suffices to show that this action does not have almost invariant unit
vectors.

To see this, note that, as Γ is non-amenable, the left regular representation σ : Γ y
`p(Γ) does not have almost invariant unit vectors. There are therefore g1, . . . , gk ∈ Γ and
ε > 0 so that

(1) max
16i6k

‖x− σ(gi)x‖ > ε‖x‖

for every non-zero vector x ∈ `p(Γ). For s ∈ T ′, let Ps : `p(T
′ × Γ) → `p({s} × Γ)

denote the canonical projection and note that Ps commutes with the ρ(gi). Now, fix 0 6=
x ∈ `p(T ′ × Γ), set

Ni =
{
s ∈ T ′

∣∣ ‖Psx− Psρ(gi)x‖ = ‖Psx− ρ(gi)Psx‖ > ε‖Psx‖
}

and note that, by (1), T ′ =
⋃

16i6kNi. We pick i so that
(∑

s∈Ni
‖Psx‖p

) 1
p > 1

k‖x‖ and
see that

‖x− ρ(gi)x‖p >
∑
s∈Ni

‖Psx− Psρ(gi)x‖p >
∑
s∈Ni

εp‖Psx‖p >
εp

kp
‖x‖p,

i.e., ‖x − ρ(gi)x‖ > ε
k‖x‖. Thus, no unit vector in `p(T ′ × Γ) is

(
ρ(g1), . . . , ρ(gk); εk

)
-

invariant. �

The operator R below occurs frequently in work on uniqueness of translation invariant
functionals, e.g., [4].

Lemma 19. For all t ∈ T and 1 < p 6 ∞, every linear operator S : `p(T ) → CT in
the commutant of λ[Gt] maps `p(T \ {t}) into CT\{t}. It follows that `p(T \ {t}) is the
unique λ[Gt]-invariant linear complement of C1t in `p(T ).

Proof. Let 1 6 q <∞ be the conjugate index of p. Fix g1, . . . , gk ∈ Gt and ε > 0 so that

max
16i6k

‖x− λ(gi)x‖ > ε‖x‖
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for any non-zero vector x ∈ `q(T \ {t}). It follows that the operator

R : `q
(
T \ {t}

)
−→ `q

(
T \ {t}

)
⊕ . . .⊕ `q

(
T \ {t}

)︸ ︷︷ ︸
k copies

defined by Rx =
(
x−λ(g1)x, . . . , x−λ(gk)x

)
is an isomorphism with a closed subspace

and therefore the conjugate operatorR∗ is surjective. Thus, every element x ∈ `p
(
T \{t}

)
can be written as

x =

k∑
i=1

yi − λ(gi)yi,

for some yi ∈ `p
(
T \ {t}

)
.

In particular, if S : `p
(
T \ {t}

)
→ CT is any linear operator commuting with λ[Gt],

then

1∗t (Sx) =

k∑
i=1

1∗tSyi − 1∗tλ(gi)Syi =

k∑
i=1

1∗tSyi − 1∗tSyi = 0,

as 1∗tλ(gi) = 1∗t . That is, S maps `p(T \ {t}) into CT\{t}.
Thus, if P : `p(T ) → C1t is a linear projection commuting with λ[Gt], then `p(T \

{t}) ⊆ kerP , and, since `p(T \ {t}) is also a linear complement of C1t, it follows that
`p(T \ {t}) = kerP , whereby P is the projection along the subspace `p(T \ {t}). �

We can now obtain the following strengthening of Proposition 17.

Theorem 20. The usual inner product is, up to a scalar multiple, the unique λ[Aut(T )]-
invariant inner product on `2(T ).

Proof. Note that, if 〈·|·〉′ is a λ[Aut(T )]-invariant inner product on `2(T ), then, for ev-
ery t ∈ T , the orthogonal complement (C1t)⊥

′
of C1t with respect to 〈·|·〉′ is a λ(Gt)-

invariant linear complement. So, by Lemma 19, we have (C1t)⊥
′

= `2(T \ {t}) and, in
particular, 〈1s|1t〉′ = 0 for all s 6= t in T , whereby {1t}t∈T is an 〈·|·〉′-orthogonal se-
quence. Since Aut(T ) acts transitively on T , we also see that 〈1s|1s〉′ = 〈1t|1t〉′ > 0 for
all s, t ∈ T and hence, by multiplying by a positive scalar, we may suppose that {1t}t∈T
is actually orthonormal with respect to 〈·|·〉′, whence the usual inner product agrees with
〈·|·〉′ on c00(T ) .

Observe now that
c00(T )⊥

′
=
⋂
t∈T

`2(T \ {t}) = {0},

showing that c00(T ) is ‖·‖′-dense in `2(T ), where ‖·‖′ is the norm induced by 〈·|·〉′. It then
follows from Parseval’s Equality applied to each of the inner products that any x ∈ `2(T )
may be simultaneously approximated in the two norms by an element of c00(T ), which,
by Cauchy–Schwarz, implies that the two inner products agree on `2(T ). �

Theorem 4. The commutant of λ[Aut(T )] in the space of linear operators from `p(T ) to
CT , 1 < p 6∞, is just C·Id.

Proof. Note that if S belongs to the commutant, then, by Lemma 19, S maps `p(T \ {t})
into CT\{t} for every t ∈ T and hence maps `p(A) =

⋂
t/∈A `p(T \ {t}) into CA =⋂

t/∈A CT\{t} for all subsets A ⊆ T . So fix t ∈ T and write S1t = α1t for some α ∈ C.
Then, for any g ∈ G, we have

S1g(t) = Sλ(g)1t = λ(g)S1t = αλ(g)1t = α1g(t).



16 VALENTIN FERENCZI AND CHRISTIAN ROSENDAL

As Aut(T ) acts transitively on T , it follows that S1s = α1s for all s ∈ T . Now, suppose
that x ∈ `p(T ) and s ∈ T and write x = y+ ξ1s, with y ∈ `p(T \ {s}) and ξ ∈ C. It then
follows that

1∗s(Sx) = 1∗s(Sy) + 1∗s
(
S(ξ1s)

)
= αξ,

showing that Sx = αx. Thus S = α·Id. �

Let us also observe that Theorem 4 fails for p = 1. Indeed, if we define N : `1(T ) →
`∞(T ) byN(1s) =

∑
t∈Ns

1t, whereNs is the set of neighbours of s in T , thenN clearly
commutes with every λ(g), g ∈ Aut(T ).

Theorems 20 and 4 show strong rigidity properties of the representation λ : Aut(T )→
U(`2(T )). In this connection, it is natural to ask whether, apart from determining the
inner product, it also determines the norm on `2(T ). Indeed, suppose λ[Aut(T )] 6 K 6
GL(`2(T )) is a bounded subgroup. Then there is an equivalent K-invariant norm ||| · |||
on `2(T ) that is uniformly convex and uniformly smooth. Moreover, for any finite subtree
A ⊆ T , the space `2(T )λ[GA] of λ[GA]-invariant vectors is just `2(A). So, by the Alaoglu–
Birkhoff Theorem (see, e.g., Theorem 4.10 [13]), there is a projection PA of `2(T ) onto the
subspace `2(A) with |||PA||| = 1. Furthermore, this must be the usual orthogonal projection
since it commutes with λ[GA]. Note also that the same holds in the dual. Finally, by
approximating by finite subtrees and passing to a wot-limit, one observes that |||PA||| = 1
for all non-empty subtrees A ⊆ T . This puts serious restrictions on the norm ||| · ||| and thus
also on K.

Problem 21. Is every bounded subgroup λ[Aut(T )] 6 K 6 GL(`2(T )) contained in
U(`2(T ))?

Observe that this is equivalent to asking whether every such K is unitarisable, since
then the K-invariant inner product must be the usual one and hence K 6 U(`2(T )).

5. A DERIVATION ASSOCIATED TO Aut(T )

In the following, we shall study a well-known derivation giving rise to a non-unitarisable
representation of F∞ (see also [22, 20] for different presentations). For this, we introduce
a bounded linear operator

L : `1(T )→ `1(T ),

where T is the ℵ0-regular tree as in Section 4. We begin by fixing a root e ∈ T and
let ·̂ : T → T be the map defined by ê = e and ŝ = sn−1, whenever s 6= e and
s0, s1, s2, . . . , sn−1, sn is the geodesic from s0 = e to sn = s. Also, for any s ∈ T ,
let Ns denote the set of neighbours of s in T .

We then let L : `1(T )→ `1(T ) be the unique bounded linear operator satisfying

L(1s) = 1ŝ

for s 6= e and
L(1e) = 0.

Observe then that the adjoint operator L∗ : `∞(T )→ `∞(T ) satisfies

L∗(1s) =
( ∑
t∈Ns

1t

)
− 1ŝ =

∑
t̂=s

1t

for s 6= e and
L∗(1e) =

∑
t∈Ne

1t.



NON-UNITARISABLE REPRESENTATIONS AND MAXIMAL SYMMETRY 17

In other words, if N : `1(T ) → `∞(T ) is the bounded operator defined at the end of
Section 4 by N(1s) =

∑
t∈Ns

1t, then L∗ + L = N , which commutes with every λ(g),
g ∈ Aut(T ). From this it follows that, for every g ∈ Aut(T ),

λ(g)L− Lλ(g) = L∗λ(g)− λ(g)L∗

as operators on `1(T ). We may hence conclude that

d(g) = L∗λ(g)− λ(g)L∗

defines an operator on `∞(T ) of norm at most 2, which restricts to an operator on `1(T )
of norm at most 2 and therefore, by the Riesz-Thorin interpolation Theorem, that d(g)
restricts to an operator on `2(T ) of norm at most 2. As evidently

d(gf) = L∗λ(gf)− λ(gf)L∗

= (L∗λ(g)− λ(g)L∗)λ(f) + λ(g)(L∗λ(f)− λ(f)L∗)

= d(g)λ(f) + λ(g)d(f),

we see that d : Aut(T )→ B(`2(T )) is a bounded derivation.
Now, if one identifies T with the Cayley graph of F∞, it is known that even the re-

striction of d to F∞ viewed as translations of T is non-inner (see, e.g., [22, 20]). However,
allowing for all of Aut(T ), we see that not only is d not defined by an element of B(`2(T )),
but L∗ is essentially the only linear operator from `2(T ) to CT defining d.

Theorem 22. Suppose A : `2(T ) → CT is a globally defined linear operator so that
d(g) = Aλ(g)− λ(g)A for all g ∈ Aut(T ). Then A = L∗ + ϑId for some ϑ ∈ C.

Proof. Assume that A : `2(T )→ CT is as above. Then, for all g ∈ Aut(T ),

Aλ(g)− λ(g)A = d(g) = L∗λ(g)− λ(g)L∗,

i.e.,
(
A − L∗

)
λ(g) = λ(g)

(
A − L∗

)
. By Theorem 4, it follows that A − L∗ = ϑId for

some ϑ ∈ C and our theorem follows. �

Thus, to see that d is not inner or even that d cannot be written as d(g) = Aλ(g)−λ(g)A
with A : `2(T ) → `2(T ) a globally defined linear operator, note that, in this case, A =
L∗+ϑId for some ϑ, whereby L∗ would have to map `2(T ) into `2(T ), which it does not.

However, even though the derivation d : Aut(T ) → B(`2(T )) is not inner, by Lemma
14, we see that there is a homogeneous map ψ : `2(T )→ `2(T ), uniformly continuous on
bounded sets, so that

d(g) = λ(g)ψ − ψλ(g)

for all g ∈ Aut(T ).
In the following, we combine the results above with the analysis of Sections 2 and 3. So,

to simplify notation, we letH1 andH2 denote two distinct copies of `2(T ). Now, suppose
that G 6 GL(H1 ⊕ H2) is a bounded subgroup leaving H1 invariant and containing
λd[Aut(T )], i.e., containing the block matrices(

λ(g) d(g)
0 λ(g)

)
=

(
λ(g) L∗λ(g)− λ(g)L∗

0 λ(g)

)
,

for all g ∈ Aut(T ). As we have seen in Section 2, there is a partial map

δ : GL(H1)×GL(H2)→ B(H2,H1)

so that every element of G is of the form(
u δ(u, v)
0 v

)
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for some u ∈ GL(H1) and v ∈ GL(H2). Also, by Lemma 14, there is a homogeneous
map ψ : H2 → H1, uniformly continuous on bounded sets, so that

δ(u, v) = uψ − ψv
for all u, v.

Therefore, by the expressions for d(g), we see that

λ(g)
(
L∗ + ψ

)
=
(
L∗ + ψ

)
λ(g),

when L∗ and ψ are viewed as continuous maps `2(T )→ `∞(T ), while

λ(g)
(
L− ψ

)
=
(
L− ψ

)
λ(g),

when L and ψ are viewed as continuous maps `1(T ) → `2(T ). In other words, L∗ + ψ
and L− ψ commute with λ(g) for g ∈ Aut(T ).

Now, for every subset S ⊆ T , let GS = {g ∈ Aut(T )
∣∣ g(t) = t, ∀t ∈ S} and note

that λ[GS ] acts trivially on `1(S). Since L − ψ commutes with the λ(g), we see that, for
any g ∈ GS and x ∈ `1(S),

(L− ψ)x = (L− ψ)λ(g)x = λ(g)(L− ψ)x,

which means that (L−ψ)x ∈ `2(T )λ[GS ], where the latter denotes the subspace of λ[GS ]-
invariant vectors in `2(T ). But, if S is a finite subtree, then

`2(T )λ[GS ] = `2(S),

showing that L − ψ maps `1(S) into `2(S). Approximating arbitrary subtrees by finite
subtrees and extending by continuity, we conclude that L − ψ maps `1(S) into `2(S) for
all subtrees S ⊆ T . However, L maps `1(S) into `1(S ∪ Ŝ), which shows that ψ maps
`1(S) into `2(S ∪ Ŝ). More precisely, assuming that e /∈ S, if s ∈ S denotes the vertex
closest to e, we have, for all x ∈ `1(S),

1∗ŝ(Lx) = 1s(x),

and so 1∗ŝ(ψx) = 1s(x).
Observe also that the continuous homogenous map ∆: H2 ×H2 → H1 given by

∆(x, y) = ψ(x) + ψ(y)− ψ(x+ y)

satisfies ∆(x, y) = (ψ − L)x + (ψ − L)y − (ψ − L)(x + y) for x, y ∈ `1(T ), as L is
linear. Therefore, for any subtree S ⊆ T , ∆ maps `1(S)× `1(S) into `2(S) and hence, by
density of `1(S) in `2(S),

∆: `2(S)× `2(S)→ `2(S).

Also, as δ(u, v) = uψ − ψv is linear, one readily verifies that ∆(vx, vy) = u∆(x, y) for
all x, y.

Finally, since by Proposition 16 the unitary representation λ : Aut(T ) → U(`2(T )) is
irreducible, it follows from Corollary 3 that the maps(

u δ(u, v)
0 v

)
7→ u

and (
u δ(u, v)
0 v

)
7→ v

are sot-isomorphisms between G and the respective images in GL(H1) and GL(H2).
We sum up the above discussion in the following theorem.
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Theorem 6. Suppose that G 6 GL(`2(T ) ⊕ `2(T )) is a bounded subgroup leaving the
first copy of `2(T ) invariant and containing λd[Aut(T )].

Then there is a homogeneous mapψ : `2(T )→ `2(T ), uniformly continuous on bounded
subsets, for which

L∗ + ψ : `2(T )→ `∞(T ) and L− ψ : `1(T )→ `2(T )

commute with λ(g) for g ∈ Aut(T ) and so that every element of G is of the form(
u uψ − ψv
0 v

)
for some u, v ∈ GL(`2(T )).

Finally, the mappings(
u uψ − ψv
0 v

)
7→ u and

(
u uψ − ψv
0 v

)
7→ v

are sot-isomorphisms between G and their respective images in GL(`2(T )).

Note that it seems to remain open whether the two mappings in the conclusion of this
theorem have to be identical, i.e., whether u is necessary equal to v in the notation of the
theorem. Another unsolved question, directly related to Proposition 15, is whether the map
ψ may be chosen to be Lipschitz.

Using the information given by Theorem 6 and its proof, one may compute some simple
values of the function ψ associated to a bounded subgroup G.

Example 23. Since ψ − L maps `1({e}) = C1e into `2({e}) = C1e and L1e = 0, we
must have ψ(1e) = µ1e for some µ ∈ C. Thus, for any other vertex s ∈ T \ {e}, write
s = g(e) for some g ∈ Aut(T ), whereby

ψ(1s) = L1s − (L− ψ)λ(g)1e = 1ŝ − λ(g)(L− ψ)1e = 1ŝ − µ1s.

Example 24. Suppose that s 6= e and ŝ = e. Then (ψ − L)(1s + 1e) = µ1s + ν1e for
some µ, ν ∈ C, whence ψ(1s+1e) = µ1s+(1+ν)1e with µ, ν independent of s. Again,
for any pair t and t̂ of neighbouring vertices in T \ {e}, there is a g ∈ Aut(T ) so that
g(s) = t and g(e) = t̂, whereby

ψ(1t + 1t̂) = (ψ − L)(1t + 1t̂) + L(1t + 1t̂) = µ1t + (1 + ν)1t̂ + 1ˆ̂t
.

Example 25. Consider now the special case when the map δ is defined by δ(u, v) = Au−
vA for some globally defined linear operatorA : `2(T )→ CT (note that this requires the v
to be defined from A[`2(T )] into CT ). Then, by Theorem 22, we have that A = L∗ + ϑId
for some ϑ ∈ C, i.e.,

δ(u, v) = L∗u− vL∗ + ϑ(u− v).

Moreover, as(
Id ϑId
0 Id

)(
u L∗u− vL∗ + ϑ(u− v)
0 v

)(
Id −ϑId
0 Id

)
=

(
u L∗u− vL∗
0 v

)
,

we see that by conjugating G by the bounded operator
(

Id ϑId
0 Id

)
, we obtain another

bounded subgroup G′ with a corresponding map δ′(u, v) = L∗u− vL∗.
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6. STRICT CONVEXITY OF SEPARABLE TRANSITIVE BANACH SPACES

Let (X, ‖·‖) be a fixed separable transitive Banach space, i.e., whose linear isometry
group Isom(X, ‖·‖) acts transtively on the unit sphere SX = {x ∈ X

∣∣ ‖x‖ = 1}. By a
classical theorem of S. Mazur (Theorem 8.2 [12]) the norm ‖·‖ is Gâteaux differentiable
on a denseGδ subset of SX . So, by transitivity of the norm, this implies that ‖·‖ is actually
Gâteaux differentiable at every point of SX . Hence the following lemma.

Lemma 26. Let (X, ‖·‖) be a separable transitive Banach space. Then ‖·‖ is Gâteaux
differentiable, i.e., for every x ∈ SX , there is a unique support functional φx ∈ SX∗ , that
is, so that φx(x) = 1.

Now, Gâteaux differentiablity of norms and strict convexity are related via duality (see
Corollary 7.23 [12]), in the sense that, e.g., Gâteaux differentiability of the dual norm ‖·‖∗
implying strict convexity of ‖·‖. However, little information can be gained directly from
the Gâteaux differentiability of the norm on X . Nevertheless, using the Bishop–Phelps
theorem, we shall see that the norm is actually strictly convex. For this, let us recall the
statement of the Bishop–Phelps theorem: If C is a non-empty bounded closed convex
subset of a real Banach space X , then the set

{φ ∈ X∗
∣∣ ∃x ∈ C sup

y∈C
φ(y) = φ(x)}

is norm-dense in X∗.

Lemma 27. Let X be a separable real Banach space and C ⊆ SX a non-empty closed
convex set so that the setwise stabiliser {T ∈ Isom(X)

∣∣ T [C] = C} acts transitively on
C. Then C consists of a single point.

Proof. Since X is separable, we can pick a dense sequence (xn) in C. Let also λn > 0 be
so that

∑
n λn = 1 and define x =

∑
n λnxn ∈ C (note that since ‖xn‖ = 1 the sum is

absolutely convergent).
As was observed by Rolewicz [24], if φ ∈ X∗ attains its maximum on C at x, then φ

must be constant on C. Indeed, in this case,

φ(x) = φ
(∑

n

λnxn
)

=
∑
n

λnφ(xn) 6
∑
n

λnφ(x) = φ(x),

so φ(xn) = φ(x) for all n, whence φ ≡ φ(x) on C.
Now suppose for a contradiction that C contains distinct points y and z. We pick ψ ∈

X∗ of norm 1 so that ψ(y − z) = ε > 0. Then, by the theorem of Bishop–Phelps, there is
some φ ∈ X∗ with ‖ψ−φ‖ < ε

2‖y−z‖ that attains it supremum on C at some point v ∈ C.
Also,

|φ(y − z)| > |ψ(y − z)| − |(ψ − φ)(y − z)| > ε− ‖ψ − φ‖ · ‖y − z‖ > ε

2
> 0,

so φ is not constant on C.
Choose some T ∈ Isom(X) with T [C] = C so that Tx = v and note that T ∗φ attains

it maximum on C at x and thus must be constant on C. However, this is absurd, since
T [C] = C and φ fails to be constant on C. �

Theorem 28. Let (X, ‖·‖) be a separable real transitive Banach space. Then X is strictly
convex and ‖·‖ is Gâteaux differentiable.
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Proof. We already know that ‖·‖ is Gâteaux differentiable and thus every x ∈ SX has a
unique support functional φx ∈ SX∗ . Now, for x ∈ SX , consider the closed convex subset

Cx = {z ∈ SX
∣∣ φz = φx} = {z ∈ SX

∣∣ φx(z) = 1},

where the second equality follows from the uniqueness of the support functional.
Then, for all T ∈ Isom(X), either T [Cx] = Cx or T [Cx] ∩ Cx = ∅. For, suppose

z, Tz ∈ Cx. Then T ∗φx(z) = φx(Tz) = 1 = φx(z), whence by uniqueness of support
functionals we have T ∗φx = φx and hence

φx(Ty) = T ∗φx(y) = 1

for all y ∈ Cx, i.e., T [Cx] ⊆ Cx. Similarly, T−1[Cx] ⊆ Cx and thus T [Cx] = Cx.
Therefore, as Isom(X) acts transitively on SX , we see that {T ∈ Isom(X)

∣∣ T [Cx] =
Cx} acts transitively on Cx and hence, by the preceding lemma, Cx = {x}. It follows that
the mapping x ∈ Sx 7→ φx ∈ SX∗ is injective and that every functional φ ∈ SX∗ attains
its norm in at most one point of SX , that is, X is strictly convex. �

We note that, by the theorem of Bishop-Phelps, the set of norm attaining functionals is
norm dense in X∗, which, in our setting means that the φx for x ∈ SX are norm dense
in SX∗ . Moreover, by the Gâteaux differentiability of the norm, the mapping x ∈ SX 7→
φx ∈ SX∗ is ‖·‖-to-w∗ continuous. The action of Isom(X) on SX∗ is transitive on the
set {φx}x∈SX

and thus X∗ is almost transitive. However, little geometric information can
be obtained exclusively from almost transitivity, since it is known by a result of W. Lusky
[18] that every (separable) Banach space X is isometric to a complemented subspace of an
almost transitive (separable) Banach space.

Note also that if X has the Radon-Nikodym Property or is an Asplund space, then quite
stronger results may be obtained. Indeed, any almost transitive norm on such a space is
already uniformly convex (Corollary 1.3 and Theorem 2.1 [6]).
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