LIPSCHITZ STRUCTURE AND MINIMAL METRICS ON TOPOLOGICAL
GROUPS

CHRISTIAN ROSENDAL

ABSTRACT. We discuss the problem of deciding when a metrisable topological
group G has a canonically defined local Lipschitz geometry. This naturally leads
to the concept of minimal metrics on G, that we characterise intrinsically in terms
of a linear growth condition on powers of group elements.

Combining this with work on the large scale geometry of topological groups,
we also identify the class of metrisable groups admitting a canonical global Lip-
schitz geometry.

In turn, minimal metrics connect with Hilbert’s fifth problem for completely
metrisable groups and we show, assuming that the set of squares is sufficiently
rich, that every element of some identity neighbourhood belongs to a 1-parameter
subgroup.

1. INTRODUCTION

The present note deals with the problem of deciding which metrisable topolog-
ical groups have a well-defined local geometry intrinsic to the topological group
structure. To make this problem more precise, let us recall that a metrisable topo-
logical group is a topological group G whose topology may be induced by some
metric, which then is said to be compatible with the topology on G. Thus, the
metric itself is not part of the given data. These groups where characterised in
fundamental papers by G. Birkhoff [1] and S. Kakutani [7], namely, a Hausdorff
topological group G is metrisable if and only if it is first countable. Moreover,
such a group necessarily admits a compatible left-invariant metric d, i.e., so that
d(hg hf) =d(g, f) forall g, f,h € G.

An easy calculation shows that, if d and 0 are compatible left-invariant metrics
on a topological group G, then the identity map id: (G,9) — (G,d) is always
uniformly continuous and hence, by symmetry, a uniform homeomorphism. This
is of course also a reflection of the fact that both d and 0 will metrise the left-
uniform structure on G. However, unless further assumptions are added, there is
in general no control on the modulus of uniform continuity of the mapping. The
problem is thus to decide which, if any, of the compatible left-invariant metrics
on G determine a canonical local geometric structure on the group. At least up
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to local bi-Lipschitz equivalence, this is solved if G admits a minimal metric in the
following sense.

Definition 1. A metric d on a topological group G is said to be minimal if it is com-
patible, left-invariant and, for every other compatible left-invariant metric 0 on G, the
map

id: (G,0) = (G,d)
is Lipschitz in a neighbourhood of the identity, i.e., if there is an identity neighbourhood
U and a constant K so that

d(g, f) <K-a(g, f)
forall g, f € U.

Let us first observe that, if U and K are as above, then id: (G,9) — (G,d) is
locally K-Lipschitz. For given h € G and v, w € U, note that

d(hv, hw) = d(v,w) < K-9(v, w) = d(hv, hw),

so the identity map is K-Lipschitz on the neighbourhood AU of h. It follows
immediately that any two minimal metrics on G are locally bi-Lipschitz and thus
identify a canonical local geometric or, more specifically, local Lipschitz structure
on G.

The concept of an intrinsic Lipschitz structure on a topological object is of
course common to other areas. For example, a well-known result due to D. Sul-
livan [14] states that, except for n = 4, any topological n-manifold M admits a
Lipschitz structure, that is, an atlas {¢;: U; — R"} whose transition maps are
locally Lipschitz. Moreover, any two such Lipschitz structures are related by a lo-
cally bi-Lipschitz homeomorphism of M. The local Lipschitz structure identified
by a minimal metric is even more rigid, since any two minimal metrics are locally
bi-Lipschitz via the identity map.

We remark that, unless we accept to force the metric d to be bounded, the local
minimality of Definition 1 really describes the strongest notion of minimality
possible. Indeed, if 4 is unbounded, then Vdisa compatible left-invariant metric,
while id: (G, v/d) — (G,d) is not Lipschitz for large distances.

Note also that, at least for short distances, there is no maximal metric unless
G is discrete. That is, if G is non-discrete and d is any compatible left-invariant
metric, then the mapping id: (G,d) — (G,v/d) will not be Lipschitz for short
distances.

Observation 2 (Independence of localising set). Another helpful observation is
that, if d is minimal and U is a fixed d-bounded identity neighbourhood, then,
for every compatible left-invariant d, the map

id: (U,9) — (U,d)

is Lipschitz, i.e., the localising set U can be chosen independently of d. To see this,
suppose that 0 is given and pick an identity neighbourhood V and a constant K
so thatid: (V,0) — (V,d) is K-Lipschitz. Pick « > 0 so that the open ball

By(a) = {g€G|a(g1) <a}
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is contained in V. Then, for any two elements g, f € U, either g~ f € V, whence
d(g, f) =d(1,87'f) <K-0(1,87'f) =K-3(3, f),

or g~'f ¢ V, whence

diamy,(U)

d(g, f) < diamy(U) < —— = -9(g, f).
In other words, id: (U,9) — (U, d) is Lipschitz with constant
K4 diam, (U) ‘
It

From this observation, it follows immediately that any two bounded minimal
metrics are bi-Lipschitz equivalent. Nevertheless, in many cases, a better global
Lipschitz structure can be identified that captures the large scale geometry of the
group. We return to this in Theorem 14.

One way to think about minimal metrics is via the decay of the balls B;(«) as
« — 0. Namely, minimality of d simply expresses that, if d is another compatible
left-invariant metric on G, then, for some A = A(d) > 0, we have

By(A - &) C By(w)

whenever « < 1. So, up to the rescaling by A, the d-balls B;(«) are as large as
possible as a decreases to 0.

Whereas minimality of a metric is a relative notion, i.e., defined in terms of
comparisons with other compatible left-invariant metrics on the group, the main
result of our note furnishes an internal characterisation of minimality without
reference to other metrics. Namely, we characterise the minimal metrics as those
satisfying a certain linear growth condition on powers in a neighbourhood of 1.
This condition in turn has already been studied in the literature in the context
of locally compact groups, where it turned out to be central to the solution to
Hilbert’s fifth problem. We shall discuss this connection after our result.

Theorem 3. The following conditions are equivalent for a compatible left-invariant met-
ric d on a topological group G.

(1) d is minimal,
(2) there is an open set U 2 1 so that, forall g € Gandn > 1,
1
$.85,8%,...,8"clU = d(g1)< ~

(3) there is an open set U > 1 and a constant K > 1 so that, for all ¢ € G and
n>=1,

88,88 el = n-d(g1) <K-d(g"1),
(4) there are constants € > 0 and K > 1 so that, forall g € Gandn > 1,
d(g,1) g% = n-d(g1) <K-d(g"1),

(5) there are an open set U > 1 and a constant K > 1 so that, for all g € G and
n=0,

g,gz,g4,g8,...,g2n el = 2"-d(g1) < K-d(gzn,l).
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The above result may be said to provide a satisfactory description of minimal
metrics on the group, indeed, the criterion only involves computations with pow-
ers of single elements. On the other hand, we have no informative reformulation
of which metrisable groups admit minimal metrics. One would like to know if
there is such a description that does not directly involve asking for an object as
complicated as a minimal metric itself. More precisely, the following problem
remains open.

Problem 4. Let G be a universal Polish group, e.g., G = Homeo([0,1]N). Is the
collection

{H < G | H is a closed subgroup admitting a minimal metric}
Borel in the standard Borel space of closed subgroups of G?

In connection with this, we should point out that every Polish group G with
a minimal metric is Weil complete and hence that every minimal metric on G is
complete (see Lemma 23). On the other hand, M. Malicki [9] has shown that the
class of Weil complete Polish groups itself is not Borel.

Since a compatible left-invariant metric on a topological group H need not
extend to a compatible left-invariant metric on a supergroup G, it is far from clear
from the definition of minimality that the restriction of a minimal metric on G to
a subgroup H is also minimal on H. However, using instead the reformulations
of Theorem 3, this becomes obvious, whence the following corollary.

Corollary 5. The class of topological groups admitting minimal metrics is closed under
passing to subgroups.

2. PROOF OF THE MAIN THEOREM

Before commencing the proof of Theorem 3, we recall some procedures for
constructing compatible left-invariant metrics on a topological group. The main
result in this area is the above mentioned theorem independently due to Birkhoff
and Kakutani. Of the two proofs, Birkhoff’s is the simplest and relies on a mem-
orable little trick.

Lemma 6 (G. Birkhoff [1]). Let G be a topological group and {Van},cz a neighbour-
hood basis at the identity consisting of symmetric open sets so that G = U,cz Van and

(V3n)3 C Vau1. Define 5(g, f) = inf (2" | f~1g € V3n) and put

k-1
(g, f) = inf( ;)5(hi,hi+1) | ho =gy = f)-

Then 6(g, f) <2-d(g,f) <2-6(g,f) and d is a compatible left-invariant metric on G.

However, the metric d produced by Birkhoff’s construction decreases exponen-
tially faster than needed for our purposes due to a factor (%)” For this, we shall
instead rely on the construction of Kakutani from which a better estimate can be
extracted (see [3] for a proof of the exact statement of Lemma 7 below).
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Lemma 7 (S. Kakutani [7]). Let G be a topological group and { Vy—n a neighbour-

}nelN
hood basis at the identity consisting of symmetric open sets satisfying (szn)z C Vyont1.
Then there is a compatible left-invariant metric d on G so that

B;(27") C Vp-n € By(8-27")
foralln € IN.

We now turn to the proof of Theorem 3.

Proof. (1)=(2): We claim first that there is an open neighbourhood U > 1 so that,
forallk>1and g € G,

k _
g,gz,g3,...,g2 el = geBy2 k).
In order to see this, we assume the contrary. Let V,-0 = G and, for m > 1,
inductively define symmetric open sets V,-» > 1 as follows.
Assume that V,-n is the last term that has been defined thus far and let n > m

be large enough so that By(1) C V,-u. Since the claim fails for U = B;(1), there
arek > 1and g ¢ B;(27%) so that

g,gz,g3,. ..,gzk € By(1/n).

Let F = {1,8,¢ '} and note that, since B;(1) is symmetric, we have 2 ¢ Ba(1).
Therefore, as F is finite and Bd(%) open, we can pick a sufficiently small symmet-
ric open W > 1 so that also (WFW)Zk C By(}) C Vy-m. We then set

Vys = WEW, Vs =(WEW)?, ... ,Vy = (WFW)2

At the next stage, we begin with the term V,_,,_« and proceed as above.
Therefore, at the end of the construction, we have a sequence G = V, ¢ D

V,-1 2 ... of symmetric open sets forming a neighbourhood basis at 1 so that

(Vz—m)z C Vo m1 for all m > 0. We now apply Lemma 7 to the sequence

(Vo—m)m>0 to obtain a compatible left-invariant metric 0 satisfying

By(27™) C Vy-m C By(8-27™).

Note now that there are infinitely many m so that some stage in the construc-
tion began with the term V,-u. So fix such an m and let k, g, F and W be as in the
construction step. Then ¢ € WFW = V, .« C By(8-27"K) and g ¢ Bs(275),
whence

2m=3.9(g,1) < 27F < d(g,1).
Therefore, 0 is a compatible left-invariant metric on G, but id: (G,9) — (G,d)
is not Lipschitz for short distances, contradicting the minimality of d and thus
proving the claim.

So, using the claim, fix U > 1 open so that, forall g € Gand k > 1,

k _
$8.8,...,.8 el = geBy(27")

and pick some open V 5 1 so that V2 C U. Now suppose g,82,¢°,...,¢8™ € V for
some m and let k > 0 be so that 2F < m < 281, Then also g2k+” = gzkg” eV2cC
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U for all n < 2F and so ¢’ € U for all i < 2K, In particular, g € B;(27%1) C
B4(1). In other words,

7

S

9,858, ...,¢"eV = d(g1)<

which proves (2).
(2)=(3): Assume that U > 1 is as in (2). By shrinking U if needed, we may
assume that U = Bd(%) for some integer p > 1. Now, choose a symmetric open

W > 1 so that W2 C U. We claim that
g,gz,g3,...,g" eW = n-d(g,1) <4p-d(¢"1),
which thus verifies (3).

Indeed, suppose g,¢%,¢%,...,8" € Wand g # 1. Then also g,¢%,¢°,...,8%"" €
W?2P C U and thus, if m is minimal so that g”“rl ¢ U, we have m > 2pn and
d(g,1) < % Let now k > 1 be such thatkn < m < m+1 < (k+ 1)n. Then

d(g(k+1)n,1) > d(gm+111) o d(g(k+1)nlgm+l)

_ d(gm+1,1) _ d(g(k+1)n7(m+l)/1)

1
> = [kt = (m+1)] - d(g,1)
1 n
27_7/
p m
whereby
dgkm 1) - s mm 1 1.1 n_ 1
n1) > VA S>sp 2 2 1 2 S
V2 =g 2% 7 p Kk~ ap m” "ap a(g:1)
as claimed.

(3)=(4): Let U and K be as in (3) and simply choose € > 0 so that B;(2¢) C U.
Then d(g,1) < € implies that g,¢% ¢°,...,¢" € B4(2¢) C U and hence that
n-d(g,1) <K-d(g"1).

(4)=(3): Let e > 0 and K > 1 be as in (4) and set U = B;(5%). Now, suppose
¢ # 1 and that g,¢%,...,¢" € U for some n > 1. Let m > 1 be so that ¢ €
Bi(5:) \ Bd(ﬁ) Then, by (4), we have

T2

m-+1 2

ie, g" & U, whereby m > n. It thus follows that d(g,1) < & and hence, by (4)
again, that n-d(g,1) < K-d(g",1). In other words,

K-d(g" 1) >m-d(g1)>e

g8 .., ¢ el = n-dg1) <K-d(g"1).

(3)=(5): Fix U and K as in (3). By shrinking U and increasing K, we may
suppose that U = B;(27%) and K = 2* for some k > 3. Set also V = B;(272),
whereby v C U. We claim that, for all m and g,

(Vi<2™: g eV) & (Vi<m+2k+1:¢% €V) = (vi<2"l:g eV).
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Indeed, suppose that (Vi < 2": ¢' € V) and (Vi < m+2k+1: g% € V). Assume
also that 2" < i < 2Mm+2+1 is given. Write i = 2Pr +2Pr-1 4 ... +2P1 4 f for
somem < pp < pp < ... < pr <m+2k+1andj < 2" and note that, since
r<2k+1<25—1, we have

d=¢ . devvcv¥cu

Therefore, as also gzmﬂk+1 € V, we see that ¢' € U for all i < 2"+2+1, By the

hypothesis on U, it follows that
2m+2k+1.d(g,1) gzkd(g ,1) gzkz—kzll
<

ie, d(g,1) < 2-(mt2%+1)  So, using that d(g’,1)
¢' € V foralli < 2™+, proving the claim.
Put now W = B;(2~%) and assume that n and g are given so that

om+2k+1

i-d(g,1), this shows that

g’g21g41g8/- . ~1g2n E W

Then, since w2 C V, we have that gzi € V for all i < n+ 2k. Using our claim
to inducton m = 1,2,...,n — 1, we see that gi € V C U foralli <2", and thus
2" .d(g,1) < 2k-d(g%,1), which proves (5).

(5)=(1): Suppose that 0 is another compatible left-invariant metric on G. Fix
€,7 > 0and K > 1 so that

8858485 ...,8% €Byle) = 2"-d(g1)<K-d(g¥,1)

and By(n) C By(e). Note then that, if n > 0 and g € B,(55), we also have
$,9%,8%¢%,...,8% € By(17) C By(e), whence

2".d(g,1) < K-d(g*,1) < Ke

ie, g€ Bd(%). In other words, Ba(%) C Bd(%) forall n > 0.
Now, if g € By(7) is any non-identity element, pick n > 0 so that g € Ba(zl") \
Ba(znnﬁ) - Bd(%). Then,

Ke ~2Ke 7 2Ke

d(g1) < % YRS < 7‘3(3'1)'
showing that the map id: (By(r),9) — (By(n7),d) is %—Lipschitz. O

The most obvious example of a minimal metric would seem to be the norm
metric on the additive group (X, +) of a Banach space (X, ||-||). Beyond those, we
look at groups of operators.

Example 8 (The unitary group). Using the spectral theorem, it is not hard to
verify that the metric induced by the operator norm is minimal on the unitary
group U(?H) of the separable infinite-dimensional Hilbert space .
Indeed, set
U={ueclUH)||lu-1d| <1}
and suppose 1, u?,u3,... u" € U for some fixed u € U(#H). Then, by the spec-

tral theorem, there is a o-finite measure space (X, ) and a measurable func-
tion ¢: X — T so that u is unitarily equivalent to the multiplication operator
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Mg: L2(X, p) — L?(X, u) defined by
(MpZ) (x) = p(x)¢(x).

As, for a multiplication operator My, we have ||[My|| = [|¢|/c it follows that, for
k=1,...,n,
esssup{[¢(x)* —1| | x € X} = [|¢" — 1]
— My
= ||M§ —1d]|
= ||ju* ~1d|
< 1.

Consider now a value ¢* = ¢(x), « € [—7, 71}, of ¢ so that
e 1] = |p(x)* —1] < 1

forall k = 1,...,n. Then clearly ka € [-%, %] for k = 1,...,n, whence |a| <
and so |¢(x) — 1| = |¢®® — 1| < 2. From this it thus follows that |p(x) — 1| <
for almost all x € X and hence [|u —Id| < %. So

4
wu?, . ut e U= |ju—1d| < o

N‘;i

n
4
n

showing that the metric is minimal.

Example 9 (Fredholm unitary group). While U(# ) is not separable in the opera-
tor norm topology, every separable closed subgroup G < U(#) is Polish and, by
Corollary 5, the operator norm metric will be minimal on G. For example, one
may consider the Fredholm unitary group

{AId+K € U(H) | A € T & K a compact operator},
which is Polish by the norm separability of the ideal of compact operators.

Condition (4) of Theorem 3 has been studied earlier in the literature as part
of the solution to Hilbert’s fifth problem due to A. Gleason, D. Montgomery, H.
Yamabe and L. Zippin. Indeed, in the book [15] by T. Tao, metrics satisfying
this condition are termed weak Gleason as they underlie Gleason'’s results in [5].
In particular, in [15] it is shown that a locally compact metrisable group is a
Lie group if and only if it has a weak Gleason metric. Moreover, in the locally
compact setting, every weak Gleason metric is actually Gleason, meaning that it
satisfies a further estimate on commutators (cf. Theorem 1.5.5 [15]). We do not
know if this holds in the broader category of Polish groups.

Observation 10 (Multiplication is locally Lipschitz). Let us also mention that, if
d is a minimal metric on G, then there is a constant K and an open set V > 1 so
that
fahkeV = d(fh,gh) < K- (d(f,g)+d(hK),
i.e., multiplication is K-Lipschitz in an identity neighbourhood.
To see this, fix 0 < € < 1 so that d(g,1) < 1/n whenever ¢,¢2,...,8" € By(e).

Then, given distinct g, f € B4(§), letn > 1beso that g~'f € By(55) \Bd(m)'
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So, if h € By(%), we have (h=1g~1fh) = h™1(g71f)'h € By(e) fori =1,...,n,
whereby
2

1 4
=d(h1e71 <=-< <=
A(fhgh) = a0 g 1) < ¢ <2< T d(fg)
Thus, if k € G is any other element, we have
4 4
(i gK) < d(fh,gh) +d(gh,gk) < = -d(f,g) + (k) < T - (d(f,8) +a(h k).

So setting K = 2 and V = B,(§), the claim follows.

By Condition (2) of Theorem 3, it is easy to see that, if G is a group with a weak
Gleason metric, then G is NSS, i.e., has no small subgroups, which simply means
that there is a neighbourhood U > 1 not containing any non-trivial subgroup.
Moreover, in the locally compact metrisable case, being NSS is equivalent to being
a Lie group and thus also to having a weak Gleason metric (see the exposition in
[10] or [15]). By Theorem 3, weak Gleason and minimal metrics coincide, but we
shall prefer the latter more descriptive terminology.

Recall that two topological groups G and H are locally isomorphic if there are
symmetric open identity neighbourhoods U C G, V C H and a homeomorphism
¢: U — V sothat, forall g, f € U with gf ! € U, we have

¢sf ™) = p(R)p(f)

and so, in particular, ¢(1) = 1 and ¢(f~ 1) = ¢(f)~!. For example, if T is
a discrete normal subgroup of a topological group G, then the quotient map
m: G — G/T is a local isomorphism between sufficiently small identity neigh-
bourhoods.

While evidently minimal metrics are characterised locally, the existence of min-
imal metrics appears a priori to be a global issue.

Proposition 11. The class of topological groups admitting minimal metrics is closed
under local isomorphism.

Proof. Let ¢: U — V be a local isomorphism between open identity neighbour-
hoods in topological groups G and H respectively and assume d is a minimal
metric on G. We must show that also H admits a minimal metric. By rescaling d,
we may assume that B;(1) C U. Forn > 1, set

Vaon = ¢[Ba(27")]
and observe, since ¢ is a local isomorphism, that the V,-» are symmetric open

identity neighbourhoods in H verifying (Vz—nfl)z C Vp—n foralln > 1. By Lemma
7, we find a compatible left-invariant metric d on H so that

By(27") C Vyu C By(8-27")

for all n > 1. Using Theorem 3 (5) and the minimality of d, we pick a symmetric
open identity neighbourhood W C Bd(%) and a constant K so that, forall g € G
andn > 1,

88885 ...g" €W = 2" d(g,1) <K-d(g¥,1).
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Assume now that x € H satisfies x,x2,x%x%,...,x%" € ¢[W] and write x =
¢(g) for some ¢ € W. Then g,¢*> € U and so ¢(g?) = ¢(g)*> = x> € p[W]. As
¢: U — V is a bijection, we conclude that also g € W. It follows again that
¢%,¢* € Uand so ¢(g*) = ¢(g%)? = x* € ¢p[W], whence ¢* € W, et cetera. We
therefore end up with
8848485 .87 €W

and ¢(g2") = x¥" for m < n. In particular, 2" - d(g,1) < K-d(g*,1) < §. So, if
k is minimal so that K < 2, this shows that ¢ € B;(2¥~") and thus x = ¢(g) €
@[B1(25"")] = Vyrn C By(8-2K") provided n > k. In other words, for all n > k
and x € H, we have

x,x2, x4 48, % € p[W] = 9(x,1) < g . 2k=n

Let O be a symmetric open identity neighbourhood in H so that 0% ¢ $[W]

and suppose that x € H\ {1} satisfies x, x2,xt x8,...,x%" € O for some n >

1. Then, if m is minimal so that x2""' ¢ ¢[W], we must have m > k, whence

d(x,1) < 8-2F™_ On the other hand, if p > 1 is chosen so that By(277) C ¢[W],
we have 8(x2m+1, 1) =277, ie,

A(x,1) < Tkp=m 52" 1) < oAtk 52" 1),
In other words, forall x € Hand n > 1,

x, 12,8, Y €0 = 27 9(x, 1) < 24P L9 (x 1),

which shows that d is a minimal metric on H. O

3. MAXIMAL METRICS AND GLOBAL LIPSCHITZ STRUCTURE

Whereas a minimal metric establishes a canonical local Lipschitz geometry on
a topological group, we will now combine this with the analysis from [13] of the
corresponding problem at the large scale.

Definition 12. A compatible left-invariant metric d on a topological group G is said to
be maximal if, for every other compatible left-invariant metric 0 on G, the map

id: (G,d) — (G,9)
is Lipschitz for large distances, that is, d < K - d + C for some constants K, C.

Clearly, any two maximal metrics d and d on a topological group G are quasi-
isometric, that is % -d—C <0< K-d+ C for some constants K, C.

Lemma 13. Suppose that d and 0 are both simultaneously minimal and maximal metrics
on a topological group G. Then d and 0 are bi-Lipschitz equivalent, i.e.,

1
Z.d<o<L-
Ld\a\Ld

for some constant L.
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Proof. Since d is minimal, there is an identity neighbourhood V and a constant K
so that

id: (V,9) — (V,d)
is K-Lipschitz. On the other hand, as d is maximal, there are constants M, N so
that d < M -0 + N. It thus follows that, for x €« Gand v € V,

d(xv,x) =d(v,1) <K-9(v,1) = K- 9(xv,x),
while, fora ¢ V,
d(xa,x) < M-9(xa,x)+ N

Sod < L-0, where L = max {K, M+ m} and by symmetry we find

that d and 9 are bi-Lipschitz equivalent. g

Thus, if G admits a metric that is simultaneously minimal and maximal, then
this defines a canonical global Lipschitz geometric structure on G. To characterise
this situation, we need a few new concepts and results that can all be found in
[13].

A topological group is Baire if it satisfies the Baire category theorem, that is, if
the intersection of countably many dense open sets is dense in G. Also, we say
that G is European if it is Baire and, for every identity neighbourhood V, there
is a countable set D C G so that G = (V U D). Clearly every Polish group and
every connected completely metrisable group, e.g., the additive group (X, +) of a
Banach space, is European. Also, a locally compact Hausdorff group is European
if and only if it is o-compact. For the latter fact, note that, if G is o-compact, it
can be covered by countably many translates of any identity neighbourhood V
and vice versa, if G is European and V is a compact identity neighbourhood, then
G is covered by the compact sets (F£V)" where F ranges over finite subsets of a
countable set D as above.

Finally, a subset B of a topological group G is coarsely bounded if it has finite
diameter in every continuous left-invariant pseudometric on G. If G is European,
this is equivalent to asking that, for every identity neighbourhood V, there is a
finite set F C G and a k so that B C (F V)k. Also, the group G is coarsely bounded
if it is coarsely bounded as a subset of itself.

Now, as opposed to minimal metrics, we do have a characterisation of the
existence of maximal metrics. Namely, as shown in [13], a metrisable European
group G admits a maximal metric 4 if and only if it is algebraically generated
by a coarsely bounded set, which furthermore may be taken to be an identity
neighbourhood V. Moreover, in this case, the maximal metric 4 will be quasi-
isometric to the word metric

ov(g, f) =min(k | 3oy,...,00 € VE: g = foy---vp)

associated with V.
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Theorem 14. Let G be a Polish or, more generally, a European topological group gen-
erated by a coarsely bounded set and assume that G has a minimal metric. Then G has
a metric that is simultaneously maximal and minimal and hence G has a well-defined
global Lipschitz geometric structure.

Proof. Fix a minimal metric d on G and a coarsely bounded set V generating G.
As noted above, we may assume that V is an open identity neighbourhood. Now,
as shown in [13], the formula

(g, f) :inf(id(vi,l) v, e V&g=fvr---vy)

defines a compatible left-invariant metric on G, which is quasi-isometric to the
word metric py. It thus follows that 9 is quasi-isometric to a maximal metric on
G and therefore maximal itself.

Observe now that, if W is a symmetric identity neighbourhood so that W2 Cv,
then any two elements of W differ on the right by an element of V and so the two
metrics d and d agree on W. It therefore follows that d is also minimal. O

4. UNIFORMLY NSS GROUPS

Outside of the class of locally compact groups, the problem of determining
which groups admit a minimal metric is unsolved. However, as is evident from
Condition (2) of Theorem 3, a group G with a minimal metric must be uniformly
NSS in the sense of the following definition.

Definition 15 (Uniformly NSS). A topological group G is uniformly NSS if there is
an open set U 3 1 so that, for every open V > 1, there is some n for which

g,gz,...,g” el = geV.

Observation 16 (Metrisability of uniformly NSS groups). As noted by P. Enflo
[4], a uniformly NSS group is metrisable. Indeed, let U > 1 be as in the definition
of the uniform NSS property and pick open neighbourhoods W, > 1 so that
(Wn)™ C U. Now, suppose V 3 1 is open and let n be such that ¢ € V whenever
g gz,...,g” € U. Then clearly g € W, implies that g € V, i.e,, W, C V. Thus,
the sets W, form a countable neighbourhood basis at 1 and G is metrisable by the
result of Birkhoff and Kakutani.

For other interesting facts about uniformly NSS groups, including that every
Banach-Lie group is uniformly NSS, one may consult the paper [11] by S. A.
Morris and V. Pestov. In particular, the authors show that uniformly NSS groups
are locally minimal, which we shall not define here. However, by essentially the
same proof, we may prove the following.

Proposition 17. Suppose G ~ X is a continuous isometric action of a uniformly NSS
topological group G, as witnessed by an identity neighbourhood U, on a metric space
(X,d). Assume also that, for some € > 0 and x € X, we have

g¢U=d(gx,x)>e.

Then the orbit map
geG—gxeX
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is a uniform embedding of G into X.

Proof. As the orbit map is easily seen to be uniformly continuous, to see that it
is a uniform embedding of G into X, it suffices to show that, for every identity
neighbourhood V, there is 7 > 0 so that d(gx,x) > # whenever ¢ ¢ V. So let V
be given and pick 1 so that ¢ € V whenever g,¢%,...,¢" € U. Then, if ¢ ¢ V,
there is i < n so that gi ¢ U and thus also

n-d(gx,x) =d(g"x,g" \x) +d(g" 'x,¢"2x) + ... +d(gx,x) > d(g'x,x) > e
In other words, d(gx,x) > £ forall g ¢ V. O

As is well-known, every Polish group G can be seen a closed subgroup of the
isometry group Isom(X,d) of a separable complete metric space (X, d) equipped
with the topology of pointwise convergence on X. Namely, for X one may simply
take the completion of G in some compatible left-invariant metric on which G
of course acts via the extension of left-multiplication. Apart from this, many
Polish groups occur naturally as groups of isometries of various metric spaces and
structures. For these, Proposition 17 provides important structural information
regarding those that may carry minimal metrics.

Indeed, suppose G is a closed subgroup of the isometry group Isom(X,d) of
a separable complete metric space and that G carries a minimal metric 4. Pick
then an identity neighbourhood U witnessing that G is uniformly NSS and let
X1,...,%, € X and € > 0 be chosen so that ¢ € U whenever d(gx;, x;) < € for all i.
Applying Proposition 17 to the diagonal action of G on X", we find that the map

g€G (gx1,...,8x,) € X"
is a uniform embedding of G into X". In particular, for g, g € G, we have
ek — ¢ < gk(x;)) —> g(x;) foreachi < n
k—o0 k—o0

and thus the topology on G is determined entirely by the action on the tuple
(X1, ., Xn).

5. LocaLrry SIN GrouPs

Recall that a topological group G is said to be a SIN group (for small invariant
neighbourhoods) if there a a neighbourhood basis at the identity consisting of con-
jugacy invariant sets. In the context of metrisable groups, these are, by a result of
V. Klee [8], simply the groups admitting a compatible bi-invariant metric.

Proposition 18. Let G be a SIN group with a minimal metric. Then G admits a bi-
invariant minimal metric.

Proof. Suppose d is a left-invariant minimal metric on G as witnessed by an open
set U > 1 so that )
$,8%...,8" el = d(g1) < e
Since G is SIN, we may assume that U is conjugacy invariant. Also, replacing d

with min{d, 1}, we can assume that d < 1. Define now a metric 9 by

d(g, h) = supd(gf,hf),
feG
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and note that, as G is SIN, 0 is a compatible bi-invariant metric on G. We claim
that 9 is minimal. Indeed, supposing that g,¢?,...,¢" € U, then, for every f € G,

we have flgf, (f1gf)% ..., (f-1gf)" € U and thus d(gf, f) = d(f1gf,1) <
1/n,ie., d(g,1) <1/n. O

Definition 19. G is a locally SIN group if there is an identity neighbourhood O so that
the sets

VO ={gfgl|gcO0&feV}

where V varies over identity neighbourhoods, form a neighbourhood basis at the identity.

We claim that G is locally SIN if and only if the inversion map g — g~ ! is
left-uniformly continuous on an open symmetric set W > 1. Indeed, suppose first
that inversion is left-uniformly continuous on W. This means that, for all open
V > 1 there is an open U > 1 so that

S fEW & gifeUu = gftev.

We let O > 1 be symmetric open so that O> C W. Then, for every open V 3 1,
pick U C O as above. Then, if g € O C W and h € U, note that also f = gh €
OU C Wand ¢g~'f = h € U, whereby ghg™! = ¢f ! € V, showing that U® C V,
whence G is locally SIN.

Conversely, suppose that G is locally SIN as witnessed by some symmetric
open O > 1. Then, if V > 1 is symmetric open, find some open U with1 € U C O
and U9 C V and note that

§fE0 & glfel = fgl=g-g'f-gleV=gfl=(fg) eV

So inversion is left-uniformly continuous on O.

Similarly, one may show that G is locally SIN if and only if there is an open set
W 5 1 so that the map (g, f) € W x W gf € W? is left-uniformly continuous.

For the next proposition, recall from Section 3 that a European group G is
coarsely bounded exactly when, for every open O 3 1, there are a finite set F C G
and a k so that G = (FO)*. Apart from compact groups, this is a surprisingly
common phenomenon among non-locally compact Polish or European groups,
see, e.g., [12] for a wide range of examples. Of particular interest to us is the
unitary group U () equipped with the operator norm topology for which coarse
boundedness is an immediate consequence of the spectral theorem.

Proposition 20. Let G be a coarsely bounded, locally SIN, European group. Then G is
SIN.

Proof. Let O be an open identity neighbourhood witnessing that G is locally SIN
and pick k and a finite subset F C G so that G = (FO)*. Suppose now that
U > 1lisopen. Set V =g f ~1Uf, which is an open neighbourhood of 1, and
let W 5 1 be an open set so that WO C V, whence WFO = (WO)F c vE cu.
Thus, by induction, we can choose open U = Wy D W3 D W, D ... D Wy 3 1
so that Wf 0 c W;_1, whereby W6 = WIEFO)]( C Wy = U. In particular, W,? is a
conjugacy invariant identity neighbourhood contained in U, which shows that G
admits a neighbourhood basis at 1 consisting of conjugacy invariant sets. g
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Observation 21 (Uniformly NSS groups are locally SIN). Enflo [4] showed that
uniformly NSS groups are locally SIN (though he used the terminology locally
uniform in place of locally SIN). To see this, let U > 1 be the open set given by
the uniform NSS property and pick a symmetric open O > 1 so that O% C U.
Suppose now W is an arbitrary neighbourhood of 1 and find # so that

$,8%...,8"el = geW.

We now choose some open V 3 1 so that V" C O, whence also ovrO~-1CU. In
particular, if v € V and g € O, then (gvg™')" = gv"¢ ! e Uform =1,...,n,
whereby gug~! € W. In other words, V© C W, verifying that G is locally SIN.

So combining this result of Enflo with Proposition 18 and Proposition 20, we
obtain the following.

Corollary 22. Every coarsely bounded European group with a minimal metric has a
bi-invariant minimal metric.

Recall that a sequence (f;) in a metrisable group G is left-Cauchy if flfl fi—1

i,j—o00

and right-Cauchy if f; f]._1 — 1. The group G is Ratkov complete if every sequence
i,j—co0

that is both left and right-Cauchy is convergent. This is equivalent to G being
completely metrisable, i.e., that the topology on G can be induced by a complete
metric. Also, G is Weil complete if every left-Cauchy sequence in G is convergent.
This, in turn, is equivalent to the existence of a compatible complete left-invariant
metric on G (such groups are sometimes denoted CLI for complete left-invariant).
Moreover, in this case, every compatible left-invariant metric is complete.

Lemma 23. If G is locally SIN and completely metrisable, then G is Weil complete. In
particular, every minimal metric on a completely metrisable group is necessarily complete.

Proof. Indeed, suppose that O > 1 is an open set witnessing that G is locally SIN
and that (f;) is left-Cauchy. To see that (f;) is right-Cauchy, fix a neighbourhood
U of 1 and pick some ip so that flfl fi € O foralli,j > ip. Now choose some
open W > 1 so that f; W figl C U and some open V > 1 so that VO C W. Finally,
let i1 > iy be so that fl-_lf]- € V whenever i,j > i;. Then i,j > i; implies that
figlfl- € O and so f; = f; g for some ¢ € O, whence

BfT = Fie f 1 = s S8 € fugVE T S faW T S UL
Thus (f;) is also right-Cauchy and therefore convergent in G. O

By Corollary 22 and the fact that every group with a minimal metric is NSS,
every coarsely bounded Polish group with a minimal metric must be both NSS
and SIN. Since coarsely bounded groups are very common among non-locally
compact Polish groups, this provides a significant restriction on potential exam-
ples.
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6. MINIMAL METRICS AND 1-PARAMETER SUBGROUPS

The next result has a long history and many variations. The first occurrence
seems to be the paper by Gleason [6] in which it is proved that, in a locally
euclidean NSS group, there is an identity neighbourhood in which square roots,
whenever they exist, are necessarily unique. We shall need a stronger version
of this, namely that in a uniformly NSS group the extraction of square roots,
whenever they exist, is left-uniformly continuous. A result of this form, under
additional hypotheses, is also proved in Enflo’s paper [4].

Lemma 24. Suppose G is uniformly NSS. Then there is an open set V > 1 so that, for
every open U 3 1, there is an open W 3 1 so that

S fEV & g fPeW = g lfeu.
In particular, the map g — ¢* is injective on V.

Proof. Since, by Observation 21, uniformly NSS groups are also locally SIN, we
fix a symmetric open set O > 1 witnessing both that G is uniformly NSS and
locally SIN. Let also V > 1 be symmetric open so that (VOVV)2 co.

To see that the lemma holds for V, suppose U is given and pick some # so
that (y,1%...,y" € O = y € U). Letalso W 3 1 be an open set with

WWOWO? ... WO"™" C V. Then, for x,y € O,
oyt =[xy [y ] [y e A Y )y

and so, if also x’ly € Wand i < n, then x’iyi c WWOWo* ... wo'! CV.In
other words,

yeO & xlyeW = Vi<n: xy V.

Suppose that g, f € V satisfy g72f2 € Wand sety = ¢~ 'f and x = g~y 1g.

Then x~ 'y = ¢72f? € W and thus ¢ 'y/gy’ = x~'y' € V for i < n. Note now that
yeo = Y=gy g (g7 ygy) e vOVY

for all i < n. We claim that yi € VOVV foreveni < n and yi € (VOVV)2 C O for
odd i < n. This is clear for i = 0,1, so suppose the result holds forall i < j < n
and consider i = j+ 1. If i is odd, then j is even and thus y/ € VOVV‘and
y' =yyl € V2. VOVV C (VOVV)2 On the other hand, if i is even, then | = § < j
and so y' € (VOVV)2 C O, whence v = y? € VOV V.

Thus, y,%,...,y" € O, whereby ¢! f = y € U as claimed. O

Our final result originates in work of C. Chevalley [2], who showed how to
construct one-parameter subgroups in locally Euclidean NSS groups. Again, a
generalisation to the non-locally compact setting was obtained by Enflo in [4], in
which he proved the result below under the assumption that the group is uni-
formly dissipative. However, this assumption excludes, for example, compact Lie
groups and therefore does not generalise the classical setting of locally compact
Lie groups. Our result below includes this latter setting.
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Theorem 25. Suppose G is a completely metrisable topological group admitting a min-
imal metric and that, for every open W > 1, the set {g* | g € W} is dense in a neigh-
bourhood of 1. Then there are open sets U O O > 1 so that, for every f € O, there is a
unique one-parameter subgroup (h*)yer with h' = f and h* € U for all « € [—1,1].

Proof. Let d be a minimal metric and observe that d is complete by Lemma 23. We
claim that, for all identity neighbourhoods V, there is an identity neighbourhood
W so that every element of W has a square root in V.

So, let V be a given identity neighbourhood and note that, since G has a mini-
mal metric, it is uniformly NSS. Therefore, by shrinking V, we can by Lemma 24
suppose that, for every open U 1, there is an open U > 1 satisfying

1) §feEV & g2 fPecl = ¢glfeu

By shrinking V further, we may suppose that V is closed.
Let now W = {¢? | ¢ € V}, which by assumption is a neighbourhood of 1, and
assume that f € W. We pick g, € V so that g2 — f, which means that (g?2) is

left-Cauchy and thus, by the above assumption (1) on V, also (gy) is left-Cauchy.
Since d is a complete left-invariant metric and V is closed, it follows that (g)
is convergent to some ¢ € V, whence ¢? = lim, g2 = f. In other words, every
element of W has a square root in V, which proves our claim.

Since d is minimal, there are an identity neighbourhood Vj and a k > 1 so that,
forallgc Gandn > 1,

g,gz,g4,g8,...,g2n eVy = d(g1) < pk—n-1 -d(gzn,l).

Define inductively identity neighbourhoods Vo 2 Vi 2 ... D Vj so that every
element of V;; is the square of some element in V;. By shrinking V}, we may
assume that V; = B;(e) for some € > 0.

Now suppose that Iy € Vj and choose inductively h; € Vi_; so that h% = hi

Then hy, h% = hk_l,h;f =Ng_o,.. .,h%k = hg all belong to V), whence
d(h, 1) < 2K 1 a(n2,1) = 1/2-d(ho, 1) < e/2.

This shows that every € Vj has a 25-th root f € V; so that d(f,1) < 1/2-d(h,1).
Therefore, if f € Vj is given, we can choose an infinite sequence hg, hiq, by, ... €
Vi beginning at hy = f so that hlzil = h; and d(h;11,1) < 1/2-d(h;, 1) for all i.
In particular, h?k'j = hi_j for all j < i. For every dyadic rational number a = 7
with m € Z and i € N, we can then unambigously define h* = h}" and see that
h* - hP = h*+P for all dyadic rationals a and B.
Now, if & € [0,1] is a dyadic rational, write

with 0 < a; < 2% Then

a
h* = hﬂlll _hgz . _hplﬂ’
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whereby
d(ha,l) <ap- d(l’ll,l) +ap - d(hz,l) + ...+ ap - d(hp,l)
<K|l=+=4+...4=%]-
\(2 + o5+ +2p) ¢
<2k e
Moreover, if o < %, then a; = ... = a; = 0, whence d(h*,1) < 2k—i. ¢,

It follows that the mapping a — h* is a continuous homomorphism from the
additive group of dyadic rationals with the topology induced by R into G. Since
d is a complete metric on G, it follows that this extends to a continuous one-
parameter subgroup (h*),cr with h' = f and so that d(h%,1) < 2F- € for all
ae[-1,1].

Now, suppose that (h*),cr and (g*)qscr are distinct one-parameter subgroups
in G with h! = gl. Then, by the density of the dyadic rationals in R, there must
be some dyadic rational & = 5 so that h* # g*. However, as h! = g!, it follows

that there is an ¢ > 0 so that hﬂ% # gﬁ, while hzlf = gZ%. So the squaring map

f + £ fails to be injective on any set containing {hﬁ}ﬁe[—l,l] and {gﬁ}ﬁe[—l,ly
Therefore, if we choose Vi = Bj(€) small enough so that the squaring map is

injective on By(2 - €), which is possible by Lemma 24, then, for every f € V4,

there is a unique one-parameter subgroup (h*),egr C G so that k! = f and

h* € By(2X-€) for all &« € [~1,1]. Setting U = B;(2X-€) and O = By(e), the

theorem follows. O
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