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Abstract

Minimal Hausdorff (Baire) group topologies of certain groups of transforma-
tions naturally occurring in analysis are studied. The results obtained are subse-
quently applied to show that, e.g., the homeomorphism groups of the rational and
of the irrational numbers carry no Polish group topology. In answer to a question
of A.S. Kechris it is shown that that the group of Borel automorphisms of R cannot
be a Polish group either.

1 Introduction
The question of which group topologies different groups can have is of course of in-
terest to many branches of mathematics, but for descriptive set theory this question
usually takes a specific form, namely, can a particular group be equipped with a Polish,
i.e., a separable completely metrisable group topology? This question is also tightly
connected with the possible”uniqueness” of a given Polish group topology. Of course
the fundamental results by R. M. Solovay [19] and their refinements by S. Shelah [16]
show that it is consistent with the axioms of set theory minus the axiom of choice that
any polish group has a unique Polish group topology. On the other hand, using a Hamel
basis (and thus some amount of AC) one easily constructs a multitude of Polish group
topologies on (R,+). Actually, the situation is even worse, for the abstract groups
(R,+) and (R2,+) are isomorphic and thus (R,+) can be retopologised as (R2,+),
and thus as a Polish group non-isomorphic to itself. The question then boils down
to: When does the group structure exclude these constructions involving the axiom of
choice?

One basic result in this area is the fundamental result on automatic continuity of
homomorphisms by R. M. Dudley [3]. It apparently passed rather unnoticed, despite
the fact that since its publication a number of questions and answers have appeared
covering only specific subcases of his theorem. We can do no better than refer to the
original article, but let us just mention the special case of his theorem stating that any
homomorphism from a complete metric group into a free group is necessarily contin-
uous with respect to the discrete topology on the free group. Thus, by consequence,
the free group on a continuum of generators carries no Polish group topology and, e.g.,
any homomorphism from a Polish group into (Zn,+) is continuous.
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A problem of Ulam, number 96 in the Scottish book [13], asks whether S∞, the
group of all permutations of the natural numbers, can be made into a locally compact
Polish group. This was solved in the negative by E. Gaughan [5], who actually showed
that any Hausdorff group topology on S∞ extends the usual Polish group topology of
pointwise convergence on the discrete space N. Recently, A. S. Kechris and the author
proved in [12] that any homomorphism from S∞ into a separable group is continuous,
which, in combination with Gaughan’s result, implies that S∞ has only one non-trivial
separable group topology. Actually, we shall see that the answer to Ulam’s problem
is even more striking, namely, there is no non-trivial homomorphism from S∞ into a
locally compact Polish group, and, moreover, this also holds for many other groups of
countable structures.

We classify minimal Hausdorff group topologies of some automorphism groups
of boolean algebras, using quite standard methods, and apply these results to prove
the non-existence of Polish group topologies of several groups occurring in descriptive
set theory and analysis, e.g., the homeomorphism groups of the irrational and of the
rational numbers. We should mention that in a series of papers R. Kallman (see [10])
has proved that a number of, in particular, homeomorphism groups have a unique, if
any, Polish group topology.

We also prove that the group of Borel automorphisms of R cannot have a sec-
ond countable Hausdorff group toplogy. For a detailed study of a number of different
topologies on this group one can consult the recent article by S. Bezuglyi, A. H. Dooley,
J. Kwiatkowski [1].

I would like to thank Alekos Kechris for initially getting me interested in the sub-
ject and Ben Miller for many discussions on this and other matters. But mostly I am
indebted to the anonymous referee for making this a hopefully more readable paper.

2 Polish group topologies
Let us begin with something simple. By the Borel isomorphism theorem all uncount-
able standard Borel spaces are isomorphic to R, so all groups of Borel automorphisms
of uncountable standard Borel spaces are naturally isomorphic. The following was
asked the author by A. Kechris:

Theorem 1 There is no second countable Hausdorff topology on the group of Borel
automorphisms of R.

Proof : Assume G = Aut(R,∆1
1) is given a Hausdorff group topology. Suppose

A ⊆ R, |A| > 2 and let G(A) = {g ∈ G
∣∣ supp(g) ∩ A = ∅}. We claim that G(A) is

closed in G. For x, y ∈ R, denote by (xy) the transposition of x with y.
Obviously, if g ∈ G(A) and x, y ∈ A, then (xy) · g = g · (xy).
Conversely, suppose that for some x ∈ A, g.x 6= x. Then there is y ∈ A, y 6=

g.x, x, whereby g · (xy).x = g.y 6= g.x = (xy) · g.x and thus (xy) · g 6= g · (xy). So

G(A) =
⋂

x,y∈A
{g ∈ G

∣∣ (xy) · g = g · (xy)}
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And, as the topology on G is Hausdorff, this is an intersection of closed sets, so closed.
Now fix x ∈ R and suppose that A 6= B ⊆ R are sets of cardinality > 2 with

x /∈ A, x /∈ B. Find, e.g., y ∈ A \ B and notice that (xy) ∈ G(B) \ G(A), i.e.,
G(A) 6= G(B). So we see that there are 22

ℵ0 many distinct closed subgroups of G and
hence the topology cannot be second countable. 2

The same proof shows that if we identify two Borel automorphisms if they agree on
a co-countable set, then we still have the same conclusion. For instead of using trans-
positions, we can use Borel automorphisms switching uncountable Borel sets, noting
that R is Borel isomorphic to R× R.

For B a boolean algebra and g ∈ Aut(B), we let stab(g) = {a ∈ B
∣∣ ∀b ≤

a (g(b) = b)}.
Suppose M is any structure and H = Aut(M) is its group of automorphisms.

Then H is naturally equipped with a group topology having as subbasis the sets {h ∈
H
∣∣ h(a) = b}, where a and b run over the elements ofM. We call this the topology

of pointwise convergence onM (think ofM as a discrete topological space).
We are now ready for our main result from which more interesting corollaries will

follow:

Proposition 2 Suppose B is a boolean algebra and G ≤ Aut(B) satisfies
(i) ∀a > 0 ∃a0, a1 > 0 ∃k ∈ G a0∧a1 = 0 & a0, a1 ≤ a & ¬a ∈ stab(k) & k(ai) =
a1−i.
(ii) ∀a ≤ b < 1 ∃k ∈ G k(a) = a & k(b ∧ ¬a) ∧ b = 0.
(iii) G acts transitively on B \ {0, 1}.
Assume moreover that B has a countable dense subalgebra A and G is a Hausdorff,
Baire, topological group. Then the topology on G extends the topology of pointwise
convergence on B.

We mention that if B is a homogeneous (non-trivial) boolean algebra having a
countable dense subalgebra and G = Aut(B), then the conditions of Proposition 2 are
satisfied.

Let us list the corollaries:

Corollary 3 There is no Polish group topology on the homeomorphism group of the
rational numbers nor on the homeomorphism group of the irrational numbers.

Corollary 4 The pointwise topology on the automorphism group of the countable atom-
less boolean algebra is the coarsest Hausdorff, Baire, group topology.

Corollary 4 is certainly imminent from Proposition 2, as we can take B to be the
countable atomless boolean algebra and G to be its automorphism group.

Proof of Corollary 3: We first prove it for the homeomorphism group of the irra-
tionals, N . Let B = CO(N ) be the algebra of clopen subsets of N and notice that
there is a canonical representation of H(N ) in Aut(B); an element of H(N ) acts by
translation on the clopen subsets ofN and thus acts on B by automorphisms. We claim
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that the representation is faithful, i.e., that different homeomorphisms have different
representations. So suppose f 6= g ∈ H(N ). Then for some x ∈ N , g(x) 6= f(x) and
we can find a clopen set C ⊆ N , x ∈ C such that g”C ∩ f”C = ∅. Hence f and g
have distinct representations in Aut(B).

We now claim that G = H(N ) ≤ Aut(B) satisfies (i),(ii) and (iii) in Proposition
2. This is essentially a consequence of the Alexandrov-Urysohn theorem (see (7.7) in
[11]). In particular, this theorem implies that any two non-empty clopen subset of the
irrationals are homeomorphic. So given any two clopen subsets ∅ 6= A,B ( N there
is a homeomorphism k of N such that k”A = B, thus verifying (iii). Now, notice that
given a non-empty clopen set A ⊆ N there is a non-trivial partition of A into clopen
A0, A1 and there is a k ∈ H(N ) such that k is the identity on {A and k”A0 = A1,
k”A1 = A0, hence proving (i). Similar reasoning verifies (ii).

SinceN is second countable and zero-dimensional, we also see that B has a count-
able dense subalgebra generated by a countable basis of clopen sets. So by the propo-
sition, any Polish group topology on H(N ) extends the topology of pointwise conver-
gence on B, i.e., for any clopen C ⊆ N , the subgroup {g ∈ H(N )

∣∣ g”C = C} is
open. Now take a countable partition of N into non-empty clopen subsets Nn ⊆ N
and find for each α ∈ 2N a gα ∈ H(N ) such that gα”N0 =

⋃
α(n)=1Nn ∪ N0. Then

gα”N0 6= gβ”N0 for all α 6= β and the non-empty open subsets {f ∈ H(N )
∣∣ f”N0 =

gα”N0} = gα · {f ∈ H(N )
∣∣ f”N0 = N0} are all disjoint, contradicting the separa-

bility of H(N ).
For H(Q) the argument is essentially identical. Again we let B = CO(Q) and

G = H(Q) ≤ Aut(B). Since Q is zero-dimensional we see that the representation
is faithful and (i),(ii) and (iii) follow as before, using the Frechet-Sierpinski theorem
(see (7.12) in [11]) instead of the Alexandrov-Urysohn theorem. Again this implies
that all clopen subsets of Q are homeomorphic and as Q is second countable, B has a
countable dense subalgebra. Finally, notice that Q has a countable partition into non-
empty clopen pieces using, e.g., irrational Dedekind cuts. So we can end the proof as
before. 2

Definition 5 The uniform Souslin number of a topological group is the least infinite
cardinal κ such that there are not κ disjoint left translates of any non-empty open set.
This is equivalent to saying that any non-empty open set covers the group by < κ left
translates.

We then see that in Corollary 3, we actually have the stronger conclusion that any
Hausdorff, Baire, group topology cannot have uniform Souslin number ≤ 2ℵ0 .

Proof of Proposition 2: The proof has three main steps: We first show that if c ∈ B,
the set {g ∈ G

∣∣ c ∈ stab(g)} is closed. Secondly, we prove that if a, b ∈ B, then the
set {g ∈ G

∣∣ b ≤ g(a)} is closed. And thirdly, using the existence of a countable dense
subalgebra, we find some c ∈ B \ {0, 1} such that G(c) = {g ∈ G

∣∣ g(c) = c} is an
open subgroup.

We can assume that B 6= {0, 1}. Suppose first that c ∈ B, g ∈ G and c /∈
stab(g). Then we can find b ≤ c such that g(b) 6= b, whereby either b ∧ ¬g(b) 6= 0
or g(b) ∧ ¬b 6= 0. Obviously, if b ∧ ¬g(b) 6= 0, there is 0 < a ≤ c such that
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a∧g(a) = 0. And if g(b)∧¬b 6= 0, then for a = g−1(g(b)∧¬b) ≤ b ≤ c we also have
a∧g(a) ≤ b∧(g(b)∧¬b) = 0. So by (i), we can find a0, a1 > 0, a0∧a1 = 0, a0, a1 ≤ a
and k ∈ G such that ¬c ≤ ¬a ∈ stab(k) and k(ai) = a1−i. Since a ∧ g(a) = 0, also
g(a0) ≤ g(a) ≤ ¬a ∈ stab(k) and thus k · g(a0) = g(a0) 6= g(a1) = g · k(a0),
whence g and k do not commute.

Conversely, if c ∈ stab(g) and ¬c ∈ stab(k), then clearly g and k commute. Thus

c ∈ stab(g)⇐⇒ g ∈
⋂

¬c∈stab(k)
k∈G

{f ∈ G
∣∣ fk = kf}

Hence as G is Hausdorff, for each k ∈ G the set {f ∈ G
∣∣ fk = kf} is closed and

thus for each c ∈ B the set {g ∈ G
∣∣ c ∈ stab(g)} is an intersection of closed sets and

therefore closed itself.
Notice now that for any g, k ∈ G, we have stab(gkg−1) = g·stab(k). Suppose b ≤

g(a) and a ∈ stab(k). Then g(a) ∈ g · stab(k) = stab(gkg−1) and b ∈ stab(gkg−1).
Conversely, if b 6≤ g(a), then g−1(b) 6≤ a and there are by (i) some 0 < b0, b1 ≤
g−1(b) ∧ ¬a, b0 ∧ b1 = 0 and k ∈ G such that k(bi) = b1−i and a ∈ stab(k).
I.e., g−1(b) /∈ stab(k) and a ∈ stab(k), whereby b /∈ g · stab(k) = stab(gkg−1).
Therefore,

b ≤ g(a)⇐⇒ g ∈
⋂

a∈stab(k)

{f ∈ G
∣∣ b ∈ stab(fkf−1)}

Thus for each a and b the set {g ∈ G
∣∣ b ≤ g(a)} is again an intersection of closed

sets, so closed itself.
We suppose now that 0 < a, b < 1 are some arbitrary fixed elements of B and

notice that

b 6≤ g(a)⇐⇒ g−1(b) 6≤ a⇐⇒ ∃c ∈ A \ {0, 1}
(
c ≤ g−1(b) & c ∧ a = 0

)
So the open set {g ∈ G

∣∣ b 6≤ g(a)} is the countable union of the closed sets {g ∈
G
∣∣ c ≤ g−1(b)}, where c ∈ A \ {0, 1} and c ∧ a = 0. Thus, as G is Baire, one of

these sets must have non-empty interior, say V = int{g ∈ G
∣∣ c ≤ g−1(b)} 6= ∅ for

some fixed c.
Choose some f ∈ V , let d = f−1(b), and notice that c ≤ f−1(b) = d < 1 and

that f−1 · V is an open neighbourhood of the identity 1G in G. Moreover, for any
h = f−1g ∈ f−1 · V , h(c) = f−1g(c) ≤ f−1(b) = d. Using (ii), we choose k ∈ G
such that k(c) = c and k(d ∧ ¬c) ∧ d = 0. Then for any h ∈ f−1 · V , khk−1(c) =
kh(c) ≤ k(d) ≤ c ∨ ¬d. Therefore, if h ∈ W :=

(
f−1 · V

)
∩
(
kf−1 · V · k−1

)
, we

have h(c) ≤ d ∧ (c ∨ ¬d) = c. But W is easily seen to be an open neighbourhood of
1G and if h ∈ W ∩W−1, then h(c) = c, which shows that the subgroup G(c) = {g ∈
G
∣∣ g(c) = c} contains the open set W ∩W−1, so must be open in G.
Assume now that 0 < e < 1 is any other element of B. Then as G acts transitively

on B \ {0, 1}, there is an h ∈ G with h(c) = e and thus G(e) = h ·G(c) · h−1 is open
in G.
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This shows that for any element e ∈ B the pointwise stabiliser, G(e), is open in G
and therefore, as any open subgroup is closed, also clopen, whence the topology on G
extends the pointwise topology induced by B. 2

For a set A we let A<N be the descriptive set-theoretic tree of all finite sequences
of elements ofA under the relation of end-extension. Aut(A<N) is the group of permu-
tations of the tree preserving the relation of end-extension and therefore also the root
(the empty sequence). Aut(A<N) is naturally isomorphic to the group of isometries of
AN, when the latter is equipped with its usual ultra-metric.

By methods very similar to the proof of Proposition 2 one can show that any Haus-
dorff, Baire topology on Aut(N<N) must extend the topology of pointwise convergence
on N<N. Moreover, any Hausdorff topology on Aut(2<N) must likewise extend the
topology of pointwise convergence on 2<N.

In both cases one notices first that for any s, t ∈ N<N the following set is closed:

{g ∈ Aut(N<N)
∣∣ g(s) = t}

So therefore as g(s) 6= s ⇐⇒ ∃t (length(t) = length(s) & g(s) = t), by Baire one
of the sets

{g ∈ Aut(N<N)
∣∣ g(s) = t}

must have non-empty interior and we continue as before. But in the case of Aut(2<N),
we do not need the group to be Baire, as the existential quantifier above is over a finite
set and any finite union of nowhere dense sets is nowhere dense in any topological
space.

Theorem 6 The group Aut(N<N) has a unique separable Hausdorff, Baire topology.

Proof : We know that any such topology must necessarily extend the pointwise topol-
ogy. On the other hand, it was shown by Kechris and the author in [12] that any
homomorphism from Aut(N<N) with the pointwise topology into a separable group is
automatically continuous, so this gives us the result. 2

Theorem 7 Any Hausdorff topology on Aut(2<N) extends the topology of pointwise
convergence.

3 Automorphism groups of the category algebra
We shall now see that certain groups of automorphisms of the category algebra of a
perfect Polish space cannot be made into Polish groups. So let us first recall some
basic facts about the category algebra.

Let X be a Polish space. By CAT(X) we denote the boolean algebras of Borel
sets modulo meagre sets. This algebra is called the category algebra of the space, and
we notice that, as any Borel set is equivalent modulo a meagre set to a regular open
set, the category algebra is canonically isomorphic to the complete boolean algebra of
regular open sets RO(X) (recall that a set U is called regular open in case it is equal
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to the interior of its closure). So in particular, any countable basis for the topology
on the space, consisting of regular open sets, will generate a countable dense subalge-
bra of CAT(X) = RO(X). It is easy to see that any two perfect Polish spaces have
homeomorphic dense Gδ subsets, so the category algebras of perfect Polish spaces are
all isomorphic. Thus, as non-empty regular open sets of perfect Polish spaces are per-
fect in themselves, we also see that the category algebra of a perfect Polish space is
homogeneous.

A theorem due to Sikorski (see [11] (15.12)) implies that any isomorphism be-
tween the category algebras of two uncountable Polish spaces is induced by a Borel
isomorphism between the underlying spaces. So the automorphism group of the cate-
gory algebra of an uncountable Polish space can be identified with the group of Borel
automorphisms preserving meagre sets, where two Borel automorphisms are identified
if they agree on a comeagre set.

The theory of full groups was introduced by Henry Dye [4] in order to understand
the orbit equivalence relation of a countable group of transformations on a Lebesgue
space. This project has met with considerable success in different settings and it there-
fore seems natural to investigate the category analogue.

Let us first fix some notation. If E is an equivalence relation on a set X , x is an
element ofX andA a subset ofX , we let [x]E be the equivalence class of x, {A = X\A
and [A]E the E-saturation of A, [A]E = {y ∈ X

∣∣ ∃z ∈ A yEz}.

Definition 8 Suppose X is a Polish space and E is a countable Borel equivalence
relation on X , i.e., E is Borel and all its classes are countable.

• E is said to be generically ergodic if every E-invariant Borel set of X is either
meagre or comeagre.

• E is non-singular if the E-saturation of a meagre set is meagre.

Definition 9 Let E be a non-singular countable Borel equivalence relation on a Polish
space X . We let the Borel full group of E be defined by

[E] = {g
∣∣ g is a Borel automorphism of X & ∀x ∈ X g(x)Ex}

Let N = {g ∈ [E]
∣∣ ∀∗x ∈ X g(x) = x}, where ∀∗x ∈ X means ”for a comeagre

set of x ∈ X”. Then N is a normal subgroup of [E] and we let the category full group
of E be [E]∗ = [E]/N .

As usual we will confuse cosets of N with their representatives in [E]. Notice that
by non-singularity, [E]∗ is naturally a subgroup of Aut(CAT(X)) = Aut(RO(X)).

The following couple of basic lemmas will elucidate the structure of these groups.

Lemma 10 Let E be a non-singular countable Borel equivalence relation on a Polish
space X and assume that A ⊆ X is comeagre. Then there is an E-invariant dense Gδ
set B ⊆ A.

Proof : Define by induction An and Bn by
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• A0 = A

• If An is defined and comeagre, let Bn ⊆ An be some dense Gδ subset.

• If Bn is defined, let An+1 = {[{Bn]E ⊆ Bn.

Then A0 ⊇ B0 ⊇ A1 ⊇ B1 ⊇ . . . and B =
⋂
Bn =

⋂
An is both E-invariant and

dense Gδ . 2

Lemma 11 Let E be a non-singular countable Borel equivalence relation on a Polish
space X and let {gn}N be a countable set of elements of the Borel full group [E]. Then
there is an E-invariant denseGδ ,B ⊆ X , such that each gn is a homeomorphism ofB.
Moreover, B can be taken to be a subset of any pre-described comeagre set Y ⊆ X .

Proof : Let p be the Polish topology ofX . Since the gn are Borel automorphisms, there
is a finer Polish topology τ on X , generating the same algebra of Borel sets, such that
each gn is a homeomorphism of X, τ . This follows quite trivially from Kuratowski’s
method of changing topologies (see, e.g., chapter 13 in Kechris [11]), though I haven’t
been able to locate an explicit proof other than in the case of a single automorphism
(see chapter 8 in Nadkarni [14], where the result is attributed to Mackey and Ramsay).
Choose now a p-dense Gδ set A ⊆ X on which the two topologies p and τ coincide
(this can be done by (8.38) in Kechris [11]). Then by going to a smaller E-invariant
p-dense Gδ , B ⊂ A ∩ Y , we have that B is gn-invariant for each n, so gn is a homeo-
morphism of B. 2

Lemma 12 Let G be a countable group of homeomorphisms of a perfect Polish space
X such that the induced equivalence relation E = EG is generically ergodic. Then
there is a dense G-orbit.

Proof : Notice that the orbit of x is dense iff G.x intersects every non-empty open
set iff x ∈ G.U for every non-empty open set U . But as E is generically ergodic,
[U ]E = G.U is open dense for every non-empty open U . Therefore, if x ∈

⋂
nG.Un,

where {Un}N is a basis of non-empty open sets, the orbit of x is dense. 2

We can now state our theorem.

Theorem 13 Let E be a non-singular, generically ergodic countable Borel equivalence
relation on a perfect Polish space X and let H be a group such that [E]∗ ≤ H ≤
Aut(CAT(X)). Then H carries no Polish group topology.

Corollary 14 (G. Hjorth [6], page 153) There is no Polish group topology on the au-
tomorphism group of the category algebra of R.

We will need the following elementary lemma.

Lemma 15 Let E be a non-singular, generically ergodic countable Borel equivalence
relation on a perfect Polish space X and suppose A,B are elements of CAT(X) dif-
ferent from ∅ and X . Then there is an element g ∈ [E]∗ such that g(A) = B and
¬(A ∨B) ∈ stab(g).
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Let us prove the theorem given the lemma.

Proof of Theorem 13. Be the remarks above, we know that CAT(X) is a homogeneous
complete boolean algebra containing a countable dense subalgebra. It is also clear
by the lemma, that G = [E]∗ satisfies conditions (i), (ii) and (iii) of Proposition 2,
whence the same holds for H . So any Hausdorff, Baire topology on H must extend
the topology of pointwise convergence on CAT(X). That is, for any A,B ∈ CAT(X),
the set {h ∈ H

∣∣ h(A) = B} is open. But as H acts transitively on CAT(X) and
the latter is uncountable, we get a continuum of disjoint translates of some non-empty
open set, whence the uniform Souslin number of H is (2ℵ0)+. So no topology on H
can be Polish. 2

Proof of Lemma 15. We can suppose that A and B are non-meagre, non-comeagre
Borel subsets of X and we want to construct some g ∈ [E] such that g(A) differs from
B only in a meagre set.

Let G be a countable group of Borel automorphisms of X inducing E. Find an
invariant dense Gδ subset X0 ⊂ X such that

• X0 is zero-dimensional.

• G acts by homeomorphisms on X0.

• A0 = A ∩X0 and B0 = B ∩X0 are clopen in X0.

• Every G-orbit is dense.

Moreover, let Y0 = A0 ∪B0 and {xn} be some dense subset of Y0. We let P be the set
of all homeomorphisms f such that dom(f) and rg(f) are clopen subset of Y0,

∀x ∈ dom(f) [xEf(x) & (x ∈ A0 ↔ f(x) ∈ B0)]

and A0 * dom(f), Y0 \ A0 * dom(f), B0 * rg(f), Y0 \ B0 * rg(f). Order P by
reverse inclusion, i.e., g ≤ f ⇐⇒ g extends f as a function. Now put

Dn = {f ∈ P
∣∣ xn ∈ dom(f)}

and
Tn = {f ∈ P

∣∣ xn ∈ rg(f)}

We claim that Dn and Tn are dense in P for each n ∈ N. Let us just show it for Dn.
So suppose f ∈ P is given such that xn /∈ dom(f). Then we can find some γ ∈ G
such that γ(xn) /∈ rg(f) and xn ∈ A0 ↔ γ(xn) ∈ B0. For if xn ∈ A0, notice that
B0 \ rg(f) is a non-empty clopen set, so as the orbit of xn is dense, there is a γ such
that γ(xn) ∈ B0 \ rg(f). Similarly if xn /∈ A0. So using the continuity of γ, we can
find clopen U, V ⊆ Y0 such that xn ∈ U , U∩dom(f) = ∅, V ∩rg(f) = ∅, γ(U) = V ,
andA0 * U∪dom(f), Y0\A0 * U∪dom(f),B0 * V ∪rg(f), Y0\B0 * V ∪rg(f).
Then f ∪ γ �U∈ Dn.
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Let now F be a {Dn}N, {Tn}N-generic filter on P and put h =
⋃
g∈F g. Then

h is easily seen to be a homeomorphism of dense open subsets U = dom(h) and
V = rg(h) of Y0. Moreover,

∀x ∈ U [h(x)Ex & (x ∈ A0 ↔ h(x) ∈ B0)]

Then g = h ∪ id�X0\Y0
is defined on a dense Gδ subset of X such that

∀∗x ∈ X [g(x)Ex & (x ∈ A↔ g(x) ∈ B)]

Now, using the fact that any comeagre subset of X contains an E-invariant dense Gδ ,
we see that g can be modified on an invariant meagre set, so as to be in [E], which
finishes the proof. 2

A theorem due to Sullivan, Weiss and Wright [20] says that if E and F are non-
singular, generically ergodic countable Borel equivalence relations on a perfect Polish
spaces X and Y respectively, then there are invariant dense Gδ subsets X0 ⊆ X and
Y0 ⊆ Y and a homeomorphism φ : X0 ↔ Y0 such that ∀x, x′ ∈ X0 (xEx′ ↔
φ(x)Fφ(x′)). So in particular φ induces an isomorphism of [E]∗ with [F]∗. But another
natural question is whether any isomorphism between [E]∗ and [F]∗ lifts to such a point
map. The answer to this question turns out to be contained in a very general result of
M. Rubin on the reconstruction of boolean algebras from their automorphism groups.

Definition 16 LetK be a class of pairs (B, G), where B is a boolean algebra andG ≤
Aut(B). K is said to be faithful if for all (B0, G0), (B1, G1) ∈ K and isomorphisms
Θ : G0

∼= G1 there is an isomorphism φ : B0
∼= B1 such that Θ(g) = φ ◦ g ◦ φ−1 for

all g ∈ G0.

Definition 17 Let B be a complete atomless boolean algebra and G ≤ Aut(B). The
pair (B, G) is said to be a local movement system if the set {SUPP (g)

∣∣ g ∈ G} is
dense in B, where we define SUPP (g) =

∨
{a ∈ B

∣∣ g(a) ∧ a = 0} (notice that this
makes sense as we are working in a complete boolean algebra).

Theorem 18 (M. Rubin [15]) The class of local movement systems is faithful.

Lemma 19 Let (X, pX) and (Y, pY ) be Polish spaces and φ : X ↔ Y a Borel isomor-
phism preserving meagre sets. Then there are dense Gδ subsets X0 ⊆ X and Y0 ⊆ Y
such that φ is a homeomorphism of X0 with Y0.

Proof : Find finer Polish topologies τX and τY such that φ is a homeomorphism of
(X, τX) with (Y, τY ). Then there are pX -dense Gδ and pY -dense Gδ sets A ⊆ X
and B ⊆ Y such that pX �A= τX �A and pY �B= τY �B . But as pX ⊆ τX and
pY ⊆ τY ,A andB are alsoGδ in τX and τY . Moreover, φ(A) and φ−1(B) are τY −Gδ
and τX − Gδ respectively, as φ is a homeomorphism with respect to these topologies.
Therefore, X0 = A ∩ φ−1(B) is Gδ in (A, pX) = (A, τX) and Y0 = B ∩ φ(A) is
Gδ in (B, pY ) = (B, τY ). But as φ also preserves meagre sets, they are comeagre in
(X, pX) and (Y, pY ) respectively and hence dense Gδ in (X, pX) and (Y, pY ). 2
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Corollary 20 Suppose E and F are non-singular, generically ergodic countable Borel
equivalence relations on a perfect Polish spaces X and Y respectively. Then

(i) Aut([E]∗) is equal to the normaliser of [E]∗ in Aut(CAT(X)).
(ii) If Θ : [E]∗ ∼= [F]∗ is an isomorphism, then there are invariant dense Gδ subsets

X0 ⊆ X and Y0 ⊆ Y and a homeomorphism φ : X0 ↔ Y0 such that Θ(g) =
φ ◦ g ◦ φ−1.

Proof : Again we consider [E]∗ to be a subgroup of Aut(CAT(X)), and we claim that
(CAT(X), [E]∗) is a local movement system. So suppose C ⊆ X is a non-meagre
Borel set, we need to find g ∈ [E]∗ such that SUPP (g) ≤ C. But for this let A Y
B = C be a partition of C into non-meagre Borel sets and find by Lemma 15 some
g ∈ [E]∗ such that g(A) = B and ¬C ∈ stab(g). I.e., SUPP (g) = C. This shows
(CAT(X), [E]∗) to be a local movement system, whence any automorphism of [E]∗ is
induced by an automorphism of CAT(X). So Aut([E]∗) is equal to the normaliser,
N([E]∗), of [E]∗ in Aut(CAT(X)).

For (ii) we can apply the same reasoning and then notice that any isomorphism
between the category algebras of two Polish spaces is induced by a homeomorphism
between dense Gδ subsets (This follows from Lemma 19 and (15.10) in [11]). 2

We should in this connection give an explicit description of the normaliser of [E]∗

in Aut(CAT(X)):

N([E]∗) = {g ∈ Aut(CAT(X))
∣∣ ∀∗x ∀y ∈ [x]E

(
g(x)Eg(y) & g−1(x)Eg−1(y)

)
}

To see this, notice first that if

∀∗x ∀y ∈ [x]E (g(x)Eg(y) & g−1(x)Eg−1(y))

and f ∈ [E]∗, then
∀∗y g−1f(y)Eg−1(y)

and hence
∀∗x g−1fg(x)Eg−1g(x) = x

whereby g−1fg ∈ [E]∗. Similarly, gfg−1 ∈ [E]∗, whence g ∈ N([E]∗).
Conversely, fix a countable group G of Borel automorphisms of X inducing E.

Now, suppose, e.g., ∃∗x ∃y ∈ [x]E g(x)¬Eg(y). Then for some γ ∈ G, there is a
non-meagre Borel set A ⊆ X such that ∀x ∈ A g(x)¬Eg(γ.x). By going to some
smaller non-meagre Borel set, we can suppose that γ.A ∩ A = ∅. We define f ∈ [E]∗

by

f(x) =

 γ.x if x ∈ A
γ−1.x if x ∈ γ.A
x otherwise

Then for y = g(x) ∈ g(A),

gfg−1(y) = gfg−1(g(x)) = gf(x) = g(γ.x)¬Eg(x) = y

So for a non-meagre set of y ∈ X , gfg−1(y)¬Ey, whence gfg−1 /∈ [E]∗ and g /∈
N([E]∗).
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One might wonder what happens if we in Theorem 13 consider the automorphism
group of the measure algebra of a Lebesgue probability space, i.e., the group of non-
singular Borel automorphisms, where two automorphism are identified if they agree on
a conull set. It turns out that in this case there is indeed a Polish group topology (see
[11] (17.46)). So what goes wrong here? The answer is of course that the measure
algebra, in contradistinction to the category algebra, does not have a countable dense
subalgebra, so Proposition 2 does not apply.

We should also mention that H. Woodin has proved that there is no Polish topology
on the category algebra of R that renders the boolean operations continuous (see [17]
for a simple proof of this fact). For the measure algebra of a Lebesgue probability
space the situation is again different (see [11] (17.43)).

4 Homomorphisms into locally compact groups
The above mentioned paper by Gaughan [5] was in answer to a question of Ulam on
whether S∞ could be made into a locally compact Polish group (and therefore carry
a Haar measure). Since S∞ has a unique Polish group topology this is not the case.
But as we shall see it does not even embed into such a group and in fact any (abstract)
homomorphism of S∞ into a locally compact Polish group is trivial.

Proposition 21 Let π : S∞ → H be a non-trivial abstract homomorphism into a
separable Hausdorff group. Then π is a homeomorphism with a closed subgroup of H .

Proof : A result of [12] implies that any homomorphism from S∞ into a separable
group is automatically continuous, so as H is Hausdorff, kerπ is a closed normal
subgroup of S∞. Thus as S∞ is topologically simple this means that π is either trivial,
contradicting our assumption, or an embedding. Therefore, asH is Hausdorff, so is the
induced topology on π”S∞. But by results of Gaughan [5], the Polish topology on S∞
is the minimal Hausdorff group topology, whence π is also an open map, and hence π
is a homeomorphism with the subgroup π”S∞ of H . We now only need to check that
π”S∞ is also closed in H . So suppose that (gλ) is a net in π”S∞ converging to a point
h ∈ H . Then (gλ) is both left and right Cauchy, so by the completeness of π”S∞ must
also converge in π”S∞, i.e. h ∈ π”S∞. So π”S∞ is closed. 2

We shall see that a weaker result actually holds for a much larger class of permuta-
tion groups. Before we begin we need to consider some new concepts.

Let G be any group and consider its action on Gn (n ≥ 1) given by

g · (h1, . . . , hn) = (gh1g
−1, . . . , ghng

−1)

So when n = 1 this is just the usual action by conjugation. A Polish group is said
to have ample generics in case there is a comeagre orbit for the above action of G on
Gn for each n ≥ 1. This is in general stronger than just requiring that G should have
a comeagre conjugacy class. In fact, one can show that in this case any homomor-
phism into a topological group with uniform Souslin number ≤ 2ℵ0 is automatically
continuous [12].
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It is now known that a fairly large class of automorphism groups have ample gener-
ics. These include the automorphism groups of (i) ω-stable, ω-categorical structures
[7], (ii) the random graph [9], (iii) the rational Urysohn metric space [18] and (iv) the
group of measure preserving homeomorphisms of 2N [12]. So in particular it holds for
S∞.

Incidentally, all of these groups also have a neighbourhood basis at the identity
consisting of clopen subgroups with a dense (in fact comeagre) conjugacy class [12].

A topological group is called a pro-Lie group if it is a projective limit of Lie groups
(which is equivalent to being isomorphic to a closed subgroup of a product of Lie
groups). In a personal communication, Karl H. Hofmann has shown that no non-trivial
Lie group can have a dense conjugacy class, and this in turn implies that no non-trivial
pro-Lie group can have a dense conjugacy class.

Theorem 22 Let G be a Polish group with ample generics and suppose that G has
a neighbourhood basis at the identity consisting of open subgroups with dense conju-
gacy classes. Then there is no non-trivial abstract homomorphism of G into a locally
compact Hausdorff group with uniform Souslin number ≤ 2ℵ0 (e.g, into a separable
group).

Proof : SupposeH is a locally compact Hausdorff group with uniform Souslin number
≤ 2ℵ0 and let π : G → H be any homomorphism. As G has ample generics, π
is necessarily continuous. Put N = π”G ≤ H , which is still locally compact. Let
N0 ≤ N be the connected component of the identity element in N , whereby N0 is a
closed normal subgroup and N/N0 a totally disconnected locally compact Hausdorff
group. Therefore, by a theorem of van Dantzig (Theorem 1.34 in [8]), N/N0 has a
neighbourhood basis at the identity consisting of compact open subgroups. So choose
some compact open K ≤ N/N0 and denote by π0 the composition of π with the
quotient mapping from N to N/N0. Then π−10 (K) is open in G and we can therefore
find a clopen F ≤ π−10 (K) ≤ G with a dense conjugacy class C ⊂ F . But then
π0(C) is a dense set in π0”F and is contained in a single conjugacy class of π0”F .
Hence as this latter group is compact and the conjugation action on itself is continuous,
each conjugacy class is closed. Therefore the conjugacy class of the identity element
is everything, i.e., π0”F = {e}. So F ≤ ker π0 is open and as ker π0 is normal in
G, it is conjugacy invariant. Since G has ample generics, it in particular has a dense
conjugacy class, so ker π0 = G.

This shows that π”G ≤ N0 and as G is dense in N and N0 is closed, N0 = N . So
N is connected and therefore by the theorem of Gleason, Montgomery, Yamabe and
Zippin [2] it is pro-Lie. Now, the image of any dense conjugacy class in G by π will
be a dense set in N contained in a single conjugacy class, which, by the theorem of
Hofmann mentioned above, implies that N = {e}, whence π”G = {e}. 2

So from either Theorem 21 or Theorem 22 follows:

Corollary 23 Any abstract homomorphism of S∞ into a locally compact Polish group
is trivial.

The above results imply that a great number of groups appearing in analysis cannot
be abstractly embedded into a locally compact Polish group. For this it is enough that
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they should contain some copy of S∞ or indeed any of the other groups mentioned to
have ample generics. So these remarks apply in particular to, e.g., the unitary group of
`2 or the group of isomorphisms of `p.
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