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Abstract. We prove an exact, i.e., formulated without ∆-expansions, Ram-

sey principle for infinite block sequences in vector spaces over countable fields,
where the two sides of the dichotomic principle are represented by respectively

winning strategies in Gowers’ block sequence game and winning strategies in

the infinite asymptotic game. This allows us to recover Gowers’ dichotomy
theorem for block sequences in normed vector spaces by a simple application

of the basic determinacy theorem for infinite asymptotic games.

1. Introduction

The results presented here represent a new approach to the fundamental result
of W.T. Gowers [7], whose uses in Banach space theory seem far from exhausted
(for applications see, e.g., [7, 6]). Gowers’ result is a Ramsey theoretic statement
for Banach spaces that combines Ramsey theory and game theory to compensate
for the fact that a true Ramsey theoretic result fails to hold in general. The proof of
Gowers’ theorem, however, involves approximation arguments, which at times are a
bit delicate, as can be seen from the existing proofs [7, 3, 2, 8, 1], and also hitherto
seemed to require tricks not previously used in infinite-dimensional Ramsey theory.
Perhaps more importantly, the notion of weakly Ramsey sets extracted from the
proof incorporates approximations, which makes it hard to induct over and extend
beyond the class of analytic sets. For example, it was unknown whether Σ1

2 sets
are weakly Ramsey assuming Martin’s axiom, though it was shown to hold under a
strengthening of MA not equiconsistent with ZF by J. Bagaria and J. López-Abad
[3].

The novelty of our approach lies in the replacement of both sides of the dichotomy
with game theoretical statements, which completely eschew approximations and
allow for a very simple inductive proof. The new tools are the infinite asymptotic
game and the definition of strategically Ramsey sets in vector spaces over countable
fields. Using these, one easily shows that under MA, Σ1

2 sets are strategically
Ramsey, and a version of the basic determinacy result for infinite asymptotic games
[10] connects the notions of weakly Ramsey and strategically Ramsey sets.

2. Notation

Let F be a countable field and let E be a countable dimensional F-vector space
with basis (en). We equip E with the discrete topology, whereby any subset is
open, and equip its countable power E∞ with the product topology. Since E is a
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countable discrete set, E∞ is a Polish space. Notice that a basis for the topology
on E∞ is given by sets of the form

N(x0, . . . , xk) = {(yn) ∈ E∞
∣∣ y0 = x0 & . . . & yk = xk},

where x0, . . . , xk ∈ E. Let x, y, z, v be variables for non-zero elements of E. If
x =

∑
anen ∈ E, let supp x = {n

∣∣ an 6= 0} and set for x, y ∈ E,

x < y ⇔ ∀n ∈ supp x ∀m ∈ supp y n < m.

Similarly, if k is a natural number, we set

k < x⇔ ∀n ∈ supp x k < n.

Analogous notation is used for finite subsets of N. A finite or infinite sequence
(x0, x1, x2, x3, . . .) of vectors is said to be a block sequence if for all n, xn < xn+1.

Notice that, by elementary linear algebra, for all infinite dimensional subspaces
X ⊆ E there is a subspace Y ⊆ X spanned by an infinite block sequence, called
a block subspace. Henceforth, we use variables X,Y, Z, V,W to denote infinite di-
mensional block subspaces of E. Also, denote infinite block sequences by variables
x,y, z and finite block sequences by variables ~x, ~y, ~z.

If T is a set of finite block sequences, we let

[T ] = {x ∈ E∞
∣∣ if ~x is a finite initial segment of x, then ~x ∈ T}.

3. Gowers’ game and the infinite asymptotic game

Suppose X ⊆ E. We define Gowers’ game GX played below X between two play-
ers I and II as follows: I and II alternate (with I beginning) in choosing respectively
infinite dimensional subspaces Y0, Y1, Y2, . . . ⊆ X and vectors x0 < x1 < x2 < . . .
according to the constraint xi ∈ Yi:

I Y0 Y1 Y2 Y3 . . .
II x0 x1 x2 x3 . . .

Also, the infinite asymptotic game FX played below X is defined as follows: I and
II alternate (with I beginning) in choosing respectively natural numbers n0 < n1 <
n2 < . . . and vectors x0 < x1 < x2 < . . . ∈ X according to the constraint ni < xi:

I n0 n1 n2 n3 . . .
II x0 x1 x2 x3 . . .

In both games we say that the sequence (xn)n∈N is the outcome of the game. More-
over, if ~x is a finite block sequence, we define Gowers’ game GX(~x) and the infinite
asymptotic game FX(~x) as above except that the outcome is now ~xˆ(x0, x1, x2, . . .).

If X and Y are subspaces, where Y is spanned by an infinite block sequence
y = (y0, y1, y2, . . .), we write Y ⊆∗ X if there is n such that ym ∈ X for all
m ≥ n. A simple diagonalisation argument shows that if X0 ⊇ X1 ⊇ X2 ⊇ . . .
is a decreasing sequence of block subspaces, then there is some Y ⊆ X0 such that
Y ⊆∗ Xn for all n.

The aim of the games above is for each of the players to ensure that the outcome
x lies in some predetermined set depending on the player. By the asymptotic nature
of the game, it is easily seen that if A ⊆ E∞ and Y ⊆∗ X, then if II has a strategy
in GX to play in A, i.e., to ensure that the outcome is in A, then II will have a
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strategy in GY to play in A too. Similarly, if I has a strategy in FX to play in A,
then I also has a strategy in FY to play in A.

Definition 1. We say that a set A ⊆ E∞ is strategically Ramsey if for all V ⊆ E
and all ~z, there is W ⊆ V such that either

(a) II has a strategy in GW (~z) to play in A, or
(b) I has a strategy in FW (~z) to play in ∼ A.

4. Analytic sets are strategically Ramsey

Lemma 2. Open sets U ⊆ E∞ are strategically Ramsey.

Proof. Let V ⊆ E and ~z be given. By a simple diagonalisation over all finite block
sequences ~x, we can find some X ⊆ V such that for all Y ⊆ X and ~x,

II has a strategy in GY (~x) to play in U if and only if
II has a strategy in GX(~x) to play in U.

By a further diagonalisation over all finite block sequences ~x, we can find some
Y ⊆ X such that for all ~x,

if there is some Z ⊆ Y such that for all y ∈ Z, II has no strategy
in GX(~xˆy) to play in U,
then there is some n such that for all y ∈ Y , if n < y, then II has
no strategy in GX(~xˆy) to play in U.

So, finally, combining these two properties, we have for all ~x

if there is some Z ⊆ Y such that for all y ∈ Z, II has no strategy
in GY (~xˆy) to play in U,
then there is some n such that for all y ∈ Y , if n < y, then II has
no strategy in GY (~xˆy) to play in U.

Now, let T be the set of all ~x such that II has no strategy in GY (~x) to play in U.
Since U is open, we have [T ] ∩ U = ∅. Also, suppose that ~x ∈ T . Then, as II has
no strategy in GY (~x) to play in U, there is some Z ⊆ Y such that for all y ∈ Z,
II has no strategy in GY (~xˆy) to play in U, and so for some n and all y ∈ Y , if
n < y, then II has no strategy in GY (~xˆy) to play in U, i.e., ~xˆy ∈ T . Thus, if
~z ∈ T , then T provides a quasi-strategy for I in FY (~z) to play in [T ] ⊆ ∼ U. And
if ~z /∈ T , then II has a strategy in GY (~z) to play in U. Since V and ~z are arbitrary,
this shows that U is strategically Ramsey. �

Lemma 3. Suppose An ⊆ E∞ and B =
⋃
n∈N An. Let ~x and X ⊆ E be given.

Then there is Z ⊆ X such that either

(a) II has a strategy in GZ to play (zi) such that

∃n ∀V ⊆ Z I has no strategy in FV (~xˆ(z0, . . . , zn)) to play in ∼ An,

or
(b) I has a strategy in FZ(~x) to play in ∼ B.

Proof. We say that a pair (~y, n) accepts a block subspace Y if I has a strategy in
FY (~y) to play in ∼ An. Also, (~y, n) rejects Y if ∀Z ⊆ Y , (~y, n) does not accept
Z. Notice that acceptance and rejection are ⊆∗-hereditary, so there is Y ⊆ X such
that for all ~y and n, either (~y, n) accepts or rejects Y . Set

D = {(zi)
∣∣ ∃n (~xˆ(z0, . . . , zn), n) rejects Y }
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and notice that D is open. It follows, by Lemma 2, that there is Z ⊆ Y such that
either II has a strategy in GZ to play in D or I has a strategy in FZ to play in ∼ D.

In the first case, II has a strategy in GZ to play (zi) such that

∃n ∀V ⊆ Y I has no strategy in FV (~xˆ(z0, . . . , zn)) to play in ∼ An,
which immediately implies (a). So suppose instead that I has a strategy in FZ to
play in ∼ D, i.e., that I has a strategy in FZ to play (zi) such that

∀n (~xˆ(z0, . . . , zn), n) accepts Z.

Thus, I has a strategy σ in FZ to play (zi) such that for all n, I has a strategy
σ(z0,...,zn) in FZ(~xˆ(z0, . . . , zn)) to play in ∼ An. By successively putting more and
more strategies into play, I thus has a strategy in FZ(~x) to play in

⋂
n ∼ An =∼ B,

which gives us (b). Concretely, if at step n+ 1, (z0, . . . , zn) has been played, then
I will respond with

max{σ(z0, . . . , zn), σ(z0)(z1, z2, . . . , zn), . . . , σ(z0,...,zn)(∅)}.
It follows that if (zi) is the outcome of the game, then for all n, as II has responded
to a stronger strategy than σ(z0,...,zn) when playing (zn+1, zn+2, . . .), we see that
~xˆ(z0, . . . , zn)ˆ(zn+1, zn+2, . . .) ∈∼ An. Therefore, ~xˆ(zi) ∈

⋂
n ∼ An. �

Notice that both conclusions (a) and (b) in Lemma 3 are ⊆∗-hereditary in Z.

Theorem 4. Analytic sets are strategically Ramsey.

Proof. Suppose A ⊆ E∞ is analytic. Noting that for all V ⊆ E and ~z, AV~z =

{(xi) ∈ V∞
∣∣ ~zˆ(xi) ∈ A} is also an analytic subset of V∞, we can by relativising

to V∞, suppose that V = E and ~z = ∅. Also, without loss of generality, A 6= ∅.
As A is analytic, we can find a continuous surjection F : NN → A and set for

every s ∈ N<N, As = F [Ns], where Ns = {α ∈ NN
∣∣ s ⊆ α}. We note that

As =
⋃
n∈N Asˆn. Let also D(s, ~x,X) be the set

{(zi)
∣∣ ∃n ∀W ⊆ X I has no strategy in FW (~xˆ(z0, . . . , zn)) to play in ∼ Asˆn}.

Using Lemma 3 on each pair (~x, s), we find X ⊆ E such that for all ~x and all
s ∈ N<N either

(a) II has a strategy in GX to play in D(s, ~x,X), or
(b) I has a strategy in FX(~x) to play in ∼ As.

Suppose that I has no strategy in FX to play in ∼A =∼A∅. We describe a strategy
for II in GX to play in A.

First, as II has a strategy in GX to play in D(∅, ∅, X), he follows this strategy
until (z0, . . . , zn0) has been played such that I does not have a strategy in

FX(z0, . . . , zn0
)

to play in ∼ An0
.

Thus, by the assumption on X, II must have a strategy in GX to play in
D((n0), (z0, . . . , zn0), X). II now switches to follow this strategy until some fur-
ther (zn0+1, . . . , zn0+n1+1) has been played such that I does not have a strategy
in

FX(z0, . . . , zn0
, zn0+1, . . . , zn0+n1+1)

to play in ∼ A(n0,n1).
So again, by the assumption on X, II must have a strategy in GX to play in

the set D((n0, n1), (z0, . . . , zn0+n1+1), X). He again switches to follow this strategy
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until yet another (zn0+n1+2, . . . , zn0+n1+n2+2) has been played such that I does not
have a strategy in

FX(z0, . . . , zn0
, zn0+1, . . . , zn0+n1

, zn0+n1+1, . . . , zn0+n1+n2+2)

to play in ∼ A(n0,n1,n2).
Continuing in this way and letting mk = (

∑
j≤k nj) + k, the outcome of the

game will be a sequence

z = (z0, z1, z2, . . . , zm0 , . . . , zm1 , . . . , zm2 , . . .)

such that for the sequence α = (n0, n1, n2, . . .) and all k, I does not have a strategy in
FX(z0, . . . , zmk) to play in ∼ A(n0,n1,...,nk). It follows that for all k, there must be an
infinite block sequence zk end-extending (z0, . . . , zmk) such that zk ∈ A(n0,n1,...,nk).
So for some βk ∈ N(n0,n1,...,nk), we have F (βk) = zk. But, by continuity of F , we
have F (βk) −→

k→∞
F (α), while zk −→

k→∞
z, so F (α) = z and hence z ∈ A. Therefore,

this describes a strategy for II in GX to play in A. �

As is clear from the proof of Theorem 4, in the case when II has a strategy in GX
to play z ∈ A, he is at the same time able to continuously produce a witness α ∈ NN

such that F (α) = z. As it happens, this turns out to be useful in applications, so
let us give a precise formulation of this fact.

Suppose X ⊆ E. We define the unfolded Gowers game HX played below X
between two players I and II as follows: I and II alternate (with I beginning)
in choosing infinite dimensional subspaces Y0, Y1, Y2, . . . ⊆ X, respectively vectors
x0 < x1 < x2 < . . . and εi ∈ N∪ {#}, according to the constraint xi ∈ Yi and with
the demand that εi ∈ N for infinitely many i.

I Y0 Y1 Y2 Y3 . . .
II x0, ε0 x1, ε1 x2, ε2 x3, ε3 . . .

We say that the pair of sequences ((xi)i∈N, (εi)εi∈N) ∈ X∞ × NN is the outcome
of the game. (So essentially, when II plays εi = #, we can think of this as him
delaying the decision on the next coordinate of the sequence (εn)εn∈N.)

Theorem 5. Suppose B ⊆ E∞ × NN is analytic and A = projE∞(B). Then there
is an X ⊆ E such that either

(a) II has a strategy in HX to play in B, or
(b) I has a strategy in FX to play in ∼A.

Proof. Without loss of generality, B 6= ∅. Since B is analytic, there is a continuous
surjection f : NN → B. Let also π : E∞ × NN → E∞ denote the first coordinate
projection, so that F = π ◦ f : NN → A is a continuous surjection.

Now, by inspection of the proof of Theorem 4, we see that if there is no X ⊆ E
such that I has a strategy in FX to play in ∼A, then there is some X ⊆ E such
that II has a strategy in HX to produce

(
(zi)i∈N, (εi)i∈N

)
∈ X∞× (N∪{#})N such

that

F
(
(εi)εi∈N

)
=
(
(zi)i∈N

)
.

(Simply note that any coordinate of α is produced after finitely many steps of the
game GX , so it suffices to let (εi)εi∈N = α.)

So for II to play in B in the game HX , he plays an auxiliary game of HX to find
the

(
(zi)i∈N, (εi)i∈N

)
such that F

(
(εi)εi∈N

)
=
(
(zi)i∈N

)
as above. Letting β ∈ NN
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be such that

f
(
(εi)εi∈N

)
=
(
(zi)i∈N, β

)
,

for II to play in B, it suffices to play the secondary sequence (δi)i∈N such that
(δi)δi∈N = β. �

5. Infinite asymptotic games in normed vector spaces

Suppose now that F is a countable subfield of R or C and ‖ · ‖ : E → R>0 is a
norm on E. For X ⊆ E, denote by BX the unit ball of X and by B(X) the set of
block sequences (xi) of X with ‖xi‖ ≤ 1. A set A ⊆ E∞ is said to be large if for
all X ⊆ E, A ∩B(X) 6= ∅. Also, if ∆ = (δi) is a sequence of strictly positive real
numbers, denoted by ∆ > 0, and A ⊆ E∞, we define

A∆ = {(zi) ∈ E∞
∣∣ ∃(xi) ∈ A ∀i ‖xi − zi‖ < δi},

Int∆(A) =∼ (∼ A)∆ = {(xi)
∣∣ ∀(zi) (∀i ‖xi − zi‖ < δi → (zi) ∈ A)}.

To get a stronger statement in (b) of the definition of strategically Ramsey sets,
we need to allow approximations. For this, we use a variant of a result from [10],
though the proof given here is in the same spirit as that presented in [6].

Theorem 6. Suppose there is a strategy σ for I in FX to play in the set B ⊆ E∞.
Then for any sequence ∆ > 0 there are intervals I0 < I1 < I2 < . . . of N such that
for any block sequence (xi) ∈ B(X), if

∀n ∃m I0 < xn < Im < xn+1,

then (xi) ∈ B∆.

Proof. Choose sets Dn ⊆ BX such that for each finite d ⊆ N, the number of x ∈ Dn
such that supp x = d is finite, and for every x ∈ BX there is some y ∈ Dn with
supp x = supp y and ‖x− y‖ < δn. This is possible since the unit ball in [ei]i∈d is
totally bounded for all finite d ⊆ N.

For each position p = (n0, y0, . . . , ni, yi) in FX played according to σ in which
yj ∈ Dj for all j, we write p < k if nj , yj < k for all j. Notice that for all k there
are only finitely many such p with p < k, so we can define

α(k) = max(k,max{σ(p)
∣∣ p < k})

and set Ik = [k, α(k)]. The Ik are not necessarily successive, but their minimal
elements tend to ∞. So, modulo passing to a subsequence, it is enough to show
that if (xi) ∈ B(X) and

∀n ∃m I0 < xn < Im < xn+1,

then (xi) ∈ B∆.
Suppose such (xi) is given. Find yi ∈ Di such that ‖xi − yi‖ < δi and supp xi =

supp yi for all i and let 0 = b0 < b1 < b2 < . . . be integers such that

Ib0 < y0 < Ib1 < y1 < Ib2 < y2 < . . . .

We claim that there are natural numbers ni ≤ max Ibi such that each

pi = (n0, y0, . . . , ni, yi)

is a position in FX in which I has played according to σ. To see this, notice first that
n0 = α(∅) ∈ Ib0 , so p0 = (n0, y0) is played according to σ. Now, for the induction
step, suppose that pi is played according to σ, and notice that pi < min Ibi+1

= bi+1.
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We set ni+1 = σ(pi) ≤ α(bi+1) = max Ib+1, whereby pi+1 is played according to σ.
This finishes the induction and proves the claim.

Thus, (n0, y0, n1, y1, . . .) is a run of the game in which I has followed the strategy
σ and so (yi) ∈ B, whereby (xi) ∈ B∆. �

Theorem 7. Suppose A ⊆ E∞ is strategically Ramsey and for some ∆ > 0,
Int∆(A) is large. Then there is X ⊆ E such that II has a strategy in GX to play in
A.

Proof. Suppose for a contradiction that for some X ⊆ E, I has a strategy in FX to
play in ∼ A = E∞ \A. Then, using Theorem 6, we can find some Y ⊆ X such that
B(Y ) ⊆ (∼ A)∆, contradicting that Int∆(A) is large. So since A is strategically
Ramsey there is instead X ⊆ E such that II has a strategy in GX to play in A. �

6. Strategically Ramsey sets under set theoretical hypotheses

Theorem 8. The class of strategically Ramsey sets is closed under countable
unions.

Proof. Let An be strategically Ramsey for every n and set B =
⋃
nAn. Let ~x and

X ⊆ E be given. Since each An is strategically Ramsey, by diagonalising, there is
some Y ⊆ X such that for all ~y and n, either II has a strategy in FY (~y) to play in
An or I has a strategy in GY (~y) to play in ∼ An. Also, by Lemma 3 there is Z ⊆ Y
such that either

(a) II has a strategy in GZ to play (zi) such that

∃n ∀V ⊆ Z I has no strategy in FV (~xˆ(z0, . . . , zn)) to play in ∼ An,
or

(b) I has a strategy in FZ(~x) to play in ∼ B.

Note that (a) implies that II has a strategy in GZ to play (zi) such that

∃n II has a strategy in GZ(~xˆ(z0, . . . , zn)) to play in An.
And, in this case, II first follows the strategy to play some (z0, . . . , zn) such that
II has a strategy in GZ(~x ˆ (z0, . . . , zn)) to play in An and thereafter continues
with this other strategy. This, combined, is a strategy for II in GZ(~x) to play in
B =

⋃
m Am. �

Theorem 9 (MAω1). A union of ℵ1 many strategically Ramsey sets is again strate-
gically Ramsey.

Proof. By Theorem 8, it is enough to consider well-ordered increasing unions of
length ω1. So suppose Aξ ⊆ Aζ ⊆ E∞ are strategically Ramsey for all ξ < ζ < ω1

and B =
⋃
ζ<ω1

Aζ . Fix ~x and X ⊆ E. Since every Aξ is strategically Ramsey, we
can define a decreasing sequence . . . ⊆∗ Xξ ⊆∗ . . . ⊆∗ X2 ⊆∗ X1 ⊆∗ X0 ⊆ X of
length ω1 such that for all ξ < ω1 either

(a) II has a strategy in GXξ(~x) to play in Aξ, or
(b) I has a strategy in FXξ(~x) to play in ∼ Aξ.

If for some ξ, II has a strategy in GXξ(~x) to play in Aξ, then II also has a strategy
in GXξ(~x) to play in B =

⋃
ζ<ω1

Aζ and we are done. So suppose instead that for

every ξ, I has a strategy in FXξ(~x) to play in ∼ Aξ. By Lemma 5 in [5], under
MAω1

there is a Y ⊆ X such that Y ⊆∗ Xξ for all ξ. Thus, for every ξ, I has a
strategy σξ in FY (~x) to play in ∼ Aξ.
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Notice that σξ is formally a function from the countable set D of finite block
sequences ~y of Y to the set of natural numbers and hence a member of ND. By
MAω1

, the family {σ}ξ<ω1
cannot be ≤∗ unbounded in ND and hence for some

σ ∈ ND we have σξ ≤∗ σ for all ξ, i.e., for all ξ there is a finite set pξ ⊆ D such
that

∀~y ∈ D \ pξ σξ(~y) ≤ σ(~y).

By reason of cardinality, there is some p ⊆ D such that for an unbounded set
S ⊆ ω1 we have pξ = p for all ξ ∈ S. Now let n0 be large enough such that n0 ≮ y0

for all ~y = (y0, . . . , ym) ∈ p. We modify σ so that σ(∅) = n0 and otherwise leave
it unaltered. Then σ is a strategy for I in FY (~x) to play in ∼ B =

⋂
ξ<ω1

∼ Aξ =⋂
ξ∈S ∼ Aξ. To see this, suppose that (zi) is the outcome of a game in which I has

followed σ. Then as n0 < z0, we must have (z0, . . . , zm) /∈ p for all m, and hence
for all ξ ∈ S and m, σ(z0, . . . , zm) = σξ(z0, . . . , zm). If follows that for every ξ ∈ S,
I has followed the strategy σξ and hence (zi) /∈ Aξ. �

Since Σ1
2 sets are unions of ℵ1 many Borel sets, we have the following strength-

ening of a result of Bagaria and López-Abad [3]. They essentially proved the con-
clusion of Theorem 7 for Σ1

2 sets, but only under a hypothesis relatively consistent
with the existence of a large cardinal. On the other hand, our hypothesis, namely
MAω1

, is equiconsistent with ZF, which permits the use of absoluteness arguments.

Corollary 10 (MAω1
). Σ1

2 sets are strategically Ramsey.

We do not know if the axiom of projective determinacy suffices to prove that all
projective sets are strategically Ramsey, though we very much suspect so. Again,
Bagaria and López-Abad [4] proved that under PD, projective sets are weakly
Ramsey.

7. Adversarial games

In this section we consider adversarial versions of Gowers’ game and the infinite
asymptotic game in which both players contribute to the outcome. Unfortunately,
we can in this case only prove the Ramsey principle for open and closed sets. Sim-
pler adversarial games were first considered by A. M. Pelczar [9], where a specific
instance of Theorem 11 below was used to prove that any space saturated with sub-
symmetric sequences must contain a minimal subspace. Related uses of Theorem
11 can be found in [6].

Suppose X ⊆ E. We define the game AX played below X between two players I
and II as follows: I and II alternate in choosing block subspaces Z0, Z1, Z2, . . . ⊆ X
and vectors x0 < x1 < x2 < . . . ∈ X, respectively integers n0 < n1 < n2 < . . . and
vectors y0 < y1 < y2 < . . . ∈ X according to the constraints ni < xi and yi ∈ Zi:

I n0 < x0, Z0 n1 < x1, Z1 n2 < x2, Z2 . . .
II n0 y0 ∈ Z0, n1 y1 ∈ Z1, n2 . . .

We say that the sequence (x0, y0, x1, y1, . . .) is the outcome of the game.
If ~x is a finite block sequence of even length, the game AX(~x) is defined as above

except that the outcome is now ~xˆ(x0, y0, x1, y1, . . .).
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On the other hand, if ~x is a finite block sequence of odd length, AX(~x) is defined
in a similar way as before except that I begins

I Z0 n0 < x0, Z1 n1 < x1, Z2 . . .
II y0 ∈ Z0, n0 y1 ∈ Z1, n1 y2 ∈ Z2, n2 . . .

and the outcome is now ~xˆ(y0, x0, y1, x1, . . .) rather than ~xˆ(x0, y0, x1, y1, . . .).

We define the game BX in a similar way to AX except that we now have I playing
integers and II playing block subspaces:

I x0 ∈ Z0, n0 x1 ∈ Z1, n1 x2 ∈ Z2, n2 . . .
II Z0 n0 < y0, Z1 n1 < y1, Z2 . . .

with xi ∈ Zi ⊆ X and ni < yi ∈ X. Again, the outcome is (x0, y0, x1, y1, . . .).
If ~x is a finite block sequence of even length, the game BX(~x) is defined as above

except that the outcome is now ~xˆ(x0, y0, x1, y1, . . .).
On the other hand, if ~x is a finite block sequence of odd length, BX(~x) is defined

by letting I begin

I n0 x0 ∈ Z0, n1 x1 ∈ Z1, n2 . . .
II n0 < y0, Z0 n1 < y1, Z1 n2 < y2, Z2 . . .

and the outcome is now ~xˆ(y0, x0, y1, x1, . . .).

Thus, in both games AX and BX , one should remember that I is the first to play
a vector. And in AX , I plays block subspaces and II plays tail subspaces, while in
BX , II takes the role of playing block subspaces and I plays tail subspaces.

Suppose A ⊆ E∞, Y ⊆∗ X and ~x are given. Then one easily sees that if II has
a strategy in AX(~x) to play in A, then II also has a strategy in AY (~x) to play in
A. Similarly, if I has a strategy in BX(~x) to play in A, then I also has a strategy in
BY (~x) to play in A. Also, if II has a strategy in AX(~x) to play in A, then II also
has a strategy in BX(~x) to play in A.

Theorem 11. Suppose A ⊆ E∞ is open or closed. Then there is X ⊆ E such that
either

(1) II has a strategy in AX to play in A, or
(2) I has a strategy in BX to play in ∼ A.

Proof. Suppose first that A is open. We say that

(a) (~x,X) is good if II has a strategy in AX(~x) to play in A.
(b) (~x,X) is bad if ∀Y ⊆ X, (~x, Y ) is not good.
(c) (~x,X) is worse if it is bad and either

(1) |~x| is odd and ∃n ∀y ∈ X (n < y → (~xˆy,X) is bad), or
(2) |~x| is even and ∀Y ⊆ X ∃x ∈ Y (~xˆx,X) is bad).

One checks as always that good, bad and worse are all ⊆∗-hereditary.

Lemma 12. If (~x,X) is bad, then there is some Z ⊆ X such that (~x, Z) is worse.

Proof. By diagonalisation, we can find some Y ⊆ X such that for all ~y, (~y, Y ) is
either good or bad.

Assume first that |~x| is even. Since (~x, Y ) is bad, we have ∀V ⊆ X II has no
strategy in AV (~x) to play in A. So ∀V ⊆ X ∃x ∈ V such that II has no strategy in
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AV (~xˆx) to play in A, and hence such that (~xˆx, V ) is not good. Thus,

∀V ⊆ X ∃x ∈ V (~xˆx, Y ) is bad,

and so already (~x, Y ) is worse.
Now suppose instead that |~x| is odd and, towards a contradiction, that there is no

Z ⊆ Y such that (~x, Z) is worse. Then, as (~x, Y ) is bad, ∀Z ⊆ Y ∃y ∈ Z (~xˆy, Z)
is not bad and thus also ∀Z ⊆ Y ∃y ∈ Z (~xˆy, Y ) is good. So

∀Z ⊆ Y ∃y ∈ Z II has a strategy in AY (~xˆy) to play in A,

and hence II also has a strategy in AY (~x) to play in A, contradicting that (~x, Y ) is
bad. �

Diagonalising, we now find X ⊆ E such that for all ~x, either (~x,X) is good
or worse. Assume that II has no strategy in AX to play in A, whereby (∅, X) is
worse. Then, by unraveling the definition of worse and using that bad and worse
coincide below X, one sees that I has a strategy in BX to produce block sequences
(z0, z1, z2, . . .) so that for all m, (z0, z1, . . . , zm, X) is worse. In particular, for no
m does II have a strategy in AX(z0, . . . , zm) to play in A, and so, as A is open, we
must have (z0, z1, z2, . . .) ∈∼ A. So I has a strategy in BX to play in ∼ A, which
finishes the proof for open sets.

Now if instead A is closed, set

B = {xˆx
∣∣ x ∈ E & x /∈ A} = E× ∼ A,

which is open. So find some X ⊆ E such that either

(1) II has a strategy in AX to play in B, or
(2) I has a strategy in BX to play in ∼ B.

Now if II has a strategy in AX to play in B, then I has a strategy in BX to play in
∼ A. And if I has a strategy in BX to play in ∼ B, then II has a strategy in AX to
play in A, which is what needed proof. �
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