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Abstract

An elliptic curve E defined over the rational numbers Q is an
arithmetic-algebraic object: It is simultaneously a nonsingular
projective curve with an affine equation Y

2 = X
3 + AX + B, which

allows one to perform arithmetic on its points; and a finitely
generated abelian group E(Q) ≃ E(Q)tors × Zr , which allows one to
apply results from abstract algebra. The abstract nature of its rank r

can be made explicit by searching for rational points (X ,Y ).

The largest possible subgroup of an elliptic curve E is
E(Q)tors ≃ Z2 × Z8, and, curiously, these curves seem to have the
least known information about the rank r . To date, there are
twenty-seven known examples of elliptic curves over Q having
Mordell-Weil group E(Q) ≃ Z2 × Z8 × Z3, yet no larger rank has
been found.

In this talk, we give some history on the problem of determining
properties of r and analyze various approaches to finding curves of
large rank.
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Challenge Problem

E : y2 = x3 +
(

5−
√
5
)

x2 +
√
5 x

The curve has invariant j(E ) = 86048− 38496
√
5.

The curve has conductor fE = p62 p
2
5 in terms of the prime ideals

p2 = 2Z[ϕ] and p5 =
√
5 Z[ϕ], where ϕ = 1+

√
5

2 .

This curve is 2-isogeneous to (a quadratic twist of) its Galois
conjugate.

Theorem (G–, 1999)

The elliptic curve E is modular. More precisely, there is a modular form
f (q) ∈ S2

(

Γ0(160), ǫ
)

and a Dirichlet character χ : Z[ϕ] → C such that
χ2 = ǫ ◦ N

Q(
√
5)/Q and ap(f ) = χ(p) ap(E ) for almost all primes p.

Challenge

Compute the Mordell-Weil group E
(

Q(
√
5)
)

before the end of this talk!
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My Favorite Elliptic Curve:

y 2 =
(

1− x2
) (

1− k2 x2
)
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Theorem (Galileo Galilei, 1602; Christiaan Huygens, 1673)

Say we have a mass m attached to a rigid rod of length ℓ that is allowed
to swing back and forth at one end. The period of the oscillation, given
an initial angle θ0, is

Period = 4

√

ℓ

g
· K

(

sin
θ0
2

)

= 2π

√

ℓ

g

[

1 +
1

4
sin2

θ0
2

+ · · ·
]

in terms of the complete elliptic integral of the first kind:

K (k) =

∫ 1

0

dt
√

(1− t2) (1− k2 t2)
=
π

2

∞
∑

n=0

[

(2n − 1)!!

(2n)!!

]2

k2n.
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Theorem (Jakob Bernoulli, 1694)

The circumference of the lemniscus
(

x2 + y2
)2

= a2
(

x2 − y2
)

is

Arc Length = 4 a · K (
√
−1) = 2πa

∞
∑

n=0

(−1)n
[

(2n− 1)!!

(2n)!!

]2

.
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Theorem (Giulio Fagnano, 1718)

Define w = w(z) implicitly via z =

∫ w

0

dt√
1− t4

. Then

w(2 z) =
2w(z)w ′(z)

1 + w(z)4
where w ′(z) =

√

1− w(z)4.

Theorem (Leonhard Euler, 1751)

Fix a modulus k satisfying |k | < 1, and define w = w(z) implicitly via

the incomplete elliptic integral z =

∫ w

0

dt
√

(1− t2) (1 − k2 t2)
. Then

w(z ± ξ) =
w(z)w ′(ξ) ± w ′(z)w(ξ)

1− k2 w(z)2 w(ξ)2

where w ′(z) =
√

[1− w(z)2] [1− k2 w(z)2].

Remark: w(z) = sn(z) is a Jacobi elliptic function.
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Theorem

The Jacobi elliptic function sn : C/Λ → C is well-defined modulo the
period lattice Λ = {mω1 + n ω2 |m, n ∈ Z} in terms of the integrals

ω1 = 2

∫ 1/k

−1/k

dt
√

(1 − t2) (1− k2 t2)
=

4

k
· K

(

1

k

)

ω2 = 2

∫ 1

−1

dt
√

(1 − t2) (1− k2 t2)
= 4 · K (k)

The map C/Λ → C2 which sends z 7→
(

sn(z), sn′(z)
)

parametrizes

all points (x , y) on the quartic curve y2 =
(

1− x2
) (

1− k2 x2
)

.
Moreover, 0 7→ (0, 1).

Say that P =
(

sn(z), sn′(z)
)

and Q =
(

sn(ξ), sn′(ξ)
)

are on the

quartic curve. Then P ⊕ Q =
(

sn(z + ξ), sn′(z + ξ)
)

has coordinate

x(P ⊕ Q) =
x(P) y(Q) ± y(P) x(Q)

1− k2 x(P)2 x(Q)2
.
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Proposition

y2 =
(

1− x2
) (

1− k2 x2
)

is a quadric intersection in P3 and has a
Weierstrass model in P2. It is nonsingular if and only if k 6= −1, 0, 1.

y2 =
(

1− x2
) (

1− k2 x2
)

(x , y) =

(

x1

x0
,
x2

x0

)

x





x22 =
(

x3 − x0
) (

k2 x3 − x0
)

x21 = x3 x0
(x1 : x2 : x3 : x0)





y

Y 2 Z = X 3 + AX Z 2 + B Z 3

A = −27
(

k4 + 14 k2 + 1
)

B = −54
(

k6 − 33 k4 − 33 k2 + 1
)

X

Z
=

3 (5 k2 − 1) x + 3 (k2 − 5)

x − 1

Y

Z
=

54 (1− k2) y

(x − 1)2
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Elliptic Curves

More generally, we consider cubic curves

E : Y 2 = X 3 + AX + B

where the rational numbers A and B satisfy 4A3 + 27B2 6= 0.

Given a field K such as either Q, R, C, or even Q(
√
5), denote

E (K ) =

{

(X : Y : Z ) ∈ P2(K )

∣

∣

∣

∣

Y 2 Z = X 3 + AX Z 2 + B Z 3

}

.

Remark: O = (0 : 1 : 0) comes from (x , y) = (1, 0) – not (x , y) = (0, 1)!
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Mordell-Weil Group

Conjecture (Henri Poincaré, 1901)

Let E be an elliptic curve over Q. Then E (Q) is a finitely generated

abelian group.

Theorem (Louis Mordell, 1922; André Weil, 1928)

Let E be an elliptic curve over a number field K . There exists a group
E (K )tors and a nonnegative integer r such that E (K ) ≃ E (K )tors × Zr .

Theorem (Barry Mazur, 1977)

The torsion subgroup of an elliptic curve E over Q is one of fifteen types:

E (Q)tors ≃
{

ZN for 1 ≤ N ≤ 10 or N = 12;

Z2 × Z2N for 1 ≤ N ≤ 4.

Question: What can one say about the Mordell-Weil rank r = r(E )?
2012 Atkin Memorial Lecture and Workshop E(Q) × Z2 × Z8 × Z4?



Motivation
Elliptic Curves

Ranks of y2 = (1 − x2) (1 − k2 x2)

Mordell-Weil Group
Are the ranks unbounded?
Z2 × Z4 and Z2 × Z8

Rank Conjecture

Conjecture

Let T be one of the fifteen torsion groups in Mazur’s Theorem. For any
given nonnegative integer r0, there exists an elliptic curve E over Q with
torsion subgroup E (Q)tors ≃ T and Mordell-Weil rank r(E ) ≥ r0.

Project

Given T and r0, find an elliptic curve E over with torsion subgroup
E (Q)tors ≃ T and Mordell-Weil rank r(E ) ≥ r0.

For each torsion group T , define the quantity

B(T ) = sup

{

r ∈ Z

∣

∣

∣

∣

there exists a curve E with E (Q) ≃ T × Zr

}

.

Question: Is B(T ) unbounded?
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Competing Points of View

Conjecture (Taira Honda, 1960)

If E is an elliptic curve defined over Q, and K is a number field, then the
ratio of the Mordell-Weil rank of E (K ) to the degree [K : Q] should be
uniformly bounded by a constant depending only on E .

Remark: If true, this would imply that there are infinite families of elliptic
curves over the rational numbers which have a uniformly bounded rank.

Theorem (Igor Shafarevich and John Tate, 1967)

The ranks are not uniformly bounded for elliptic curves defined over
function fields Fq(t).
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E(Q)tors Highest Known Rank r Found By Year Discovered

Trivial 28 Elkies 2006

Z2 19 Elkies 2009

Z3 13 Eroshkin 2007, 2008, 2009

Z4 12 Elkies 2006

Z5 8
Dujella, Lecacheux

Eroshkin
2009
2009

Z6 8

Eroshkin
Dujella, Eroshkin

Elkies
Dujella

2008
2008
2008
2008

Z7 5

Dujella, Kulesz
Elkies

Eroshkin
Dujella, Lecacheux
Dujella, Eroshkin

2001
2006
2009
2009
2009

Z8 6 Elkies 2006

Z9 4 Fisher 2009

Z10 4
Dujella
Elkies

2005, 2008
2006

Z12 4 Fisher 2008

Z2 × Z2 15 Elkies 2009

Z2 × Z4 8
Elkies

Eroshkin
Dujella, Eroshkin

2005
2008
2008

Z2 × Z6 6 Elkies 2006

Z2 × Z8 3

Connell
Dujella

Campbell, Goins
Rathbun

Flores, Jones, Rollick, Weigandt, Rathbun
Fisher

2000
2000, 2001, 2006, 2008

2003
2003, 2006

2007
2009

http://web.math.hr/~duje/tors/tors.html
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Classification

Theorem

Fix a rational k 6= −1, 0, 1 for the curve Ek : y2 = (1− x2) (1 − k2 x2).

Ek(Q)tors ≃







Z2 × Z8 if k =
t4 − 6t2 + 1

(t2 + 1)2
for some rational t,

Z2 × Z4 otherwise.

Conversely, if E is an elliptic curve over K with torsion subgroup
E (Q)tors ≃ Z2 × Z4 or Z2 × Z8, then E ≃ Ek for some k ∈ K .

The modular curve X0(24) : Y
2 = X 3 + 5X 2 + 4X has Mordell-Weil

group X0(24)
(

Q
)

≃ Z2 × Z4, and so corresponds to k = 1/3.

The modular curve X1(15) : Y
2 + X Y + Y = X 3 + X 2 − 10X − 10

has X1(15)
(

Q
)

≃ Z2 × Z4, and so corresponds to k = 1/9.

Moreover, X1(15)
(

Q(
√
5)
)

≃ Z2 × Z8, and so t = (3−
√
5)/2.
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X (2, 8) =
H∗

Γ(2) ∩ Γ1(8)

2−−−−→ X1(8) =
H∗

Γ1(8)

2−−−−→ X0(8) =
H∗

Γ0(8)




y
4





y
4





y
2

X (2, 4) =
H∗

Γ(2) ∩ Γ1(4)

2−−−−→ X1(4) =
H∗

Γ1(4)

1−−−−→ X0(4) =
H∗

Γ0(4)




y
2





y
2





y
2

X (2) =
H∗

Γ(2)

2−−−−→ X1(2) =
H∗

Γ1(2)

1−−−−→ X0(2) =
H∗

Γ0(2)




y
6





y
3





y
3

X (1) =
H∗

SL2(Z)

1−−−−→ X1(1) =
H∗

SL2(Z)

1−−−−→ X0(1) =
H∗

SL2(Z)
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k(q) = 4

[

η(q)

η(q2)

]4




η(q4)

η(q2)





8

=
t(q)4 − 6 t(q)2 + 1

(

t(q)2 + 1
)2

−−−−−−−→

µ4(q) =





η(q2)

η(q)





8 



η(q2)

η(q4)





16

=
16

k(q)2

−−−−−−−→

ν4(q) =

[

η(q)

η(q4)

]8

= µ4(q) − 16





y





y





y

λ(q) =
1

16





η(q)3

η(q1/2) η(q2)2





8

=
4 k(q)

(

k(q) + 1
)2

−−−−−−−→

µ2(q) =

[

η(q)

η(q2)

]24

= 256λ(q)
(

λ(q) − 1
)

=

(

µ4(q) − 16
)2

µ4(q)

−−−−−−−→

ν2(q) =

[

η(q)

η(q2)

]24

= µ2(q)

=
ν4(q)

2

ν4(q) + 16




y





y





y

j(q) = 256

(

λ(q)2 − λ(q) + 1
)3

λ(q)2
(

λ(q) − 1
)2

−−−−−−−→ j(q) =

(

µ2(q) + 256
)3

µ2(q)
2

−−−−−−−→ j(q) =



1 + 240

∞
∑

n=1

σ3(n) q
n





3

q

∞
∏

n=1

(1 − q
n
)
24

http://phobos.ramapo.edu/~kmcmurdy/research/Models/index.html
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Example

On the quartic curve y2 = (1 − x2) (1− k2 x2), the rational point (x , y)
has order 2 if and only if [2] (x , y) = (1, 0). There are only four:

(

1

k
, 0

)

, (1, 0), (−1, 0), and

(

− 1

k
, 0

)

.
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Example

On the quartic curve y2 = (1 − x2) (1− k2 x2), the rational point (x , y)
has order 4 if and only if [2] (x , y) = (∗, 0). There are only four:

(0, 1), (0,−1), and (two points at infinity).

-4.8 -4 -3.2 -2.4 -1.6 -0.8 0 0.8 1.6 2.4 3.2 4 4.8

-3.2

-2.4

-1.6

-0.8
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E (Q) ≃ Z2 × Z4 × Zr

Rank r = 8:

Author(s) Fiber k Year Discovered

Elkies 556536737101/589636934451 2005

Eroshkin
14124977/18685325

9305732817/11123766133
2008
2008

Dujella, Eroshkin
14426371/71784369

1082331841/1753952791
2008
2008

Rank r = 7:

Author(s) Fiber k Year Discovered

Dujella

5759699/11291091
151092883/281864499
106979869/131157975
76547009/172129849
772368397/787678274
66285529/1515865129

2524013211/3323768713
2125660499/3416463309
1119101519/3685417369
3169123561/3910987351

2005
2005
2006
2006
2006
2006
2006
2006
2006
2006

Eroshkin

2978252/8060923
1297409/8215809

85945462/122383087
249238749/403292341

2008
2008
2008
2008

Dujella, Eroshkin
152618/204943
255739/328279

2008
2008

Rank r = 6:
Author(s) Fiber k Year Discovered

Ansaldi, Ford, George, Mugo, Phifer
307100/384569
94939/471975

2005
2005

http://web.math.pmf.unizg.hr/~duje/tors/z2z4.html

http://web.math.pmf.unizg.hr/~duje/tors/z2z4old67.html
2012 Atkin Memorial Lecture and Workshop E(Q) × Z2 × Z8 × Z4?

http://web.math.pmf.unizg.hr/~duje/tors/z2z4.html
http://web.math.pmf.unizg.hr/~duje/tors/z2z4old67.html


Motivation
Elliptic Curves

Ranks of y2 = (1 − x2) (1 − k2 x2)

Examples
Lower Bounds
2-Descent

E (Q) ≃ Z2 × Z8 × Z3

Author(s) Fiber t Year Discovered

Connell, Dujella 5/29 2000

Dujella

18/47
87/407
143/419
145/444
352/1017

2001
2006
2006
2006
2008

Dujella, Rathbun
230/923
223/1012

2006
2006

Campbell, Goins 15/76 2003

Campbell, Goins (with Watkins) 19/220 2005

Rathbun

47/219
74/207
17/439
159/569

2003
2006
2006
2006

Flores - Jones - Rollick - Weigandt
(with Rathbun)

86/333
101/299
65/337

2007
2007
2007

Fisher

47/266
104/321
97/488
145/527
119/579
223/657
161/779
177/815
76/999

285/1109

2009
2009
2009
2009
2009
2009
2009
2009
2009
2009

http://web.math.pmf.unizg.hr/~duje/tors/z2z8.html
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Example

In 2006, Dujella discovered the elliptic curve

E :
Y 2 + X Y = X 3

− 15343063417941874422081256126489574987160 X

+ 486503741336910955243717595559583892156442731284430865537600

with conductor
NE = 17853766311199754524060290

= 2 · 3 · 5 · 7 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 97 · 313 · 449 · 47351

has Mordell-Weil group E (Q) ≃ Z2 × Z8 × Z3. Using the substitutions

X = −

6240(4083958238540477 x + 37118233318627918)

x − 1
,

Y =
1560

(x − 1)2







1960986248603425149997386795 y

+ 81679116477080954 x2

+ 66068550160174882 x − 74236466637255836







we see that it is birationally equivalent to the quartic curve with

k =
14435946721

47594221921
=

t4 − 6 t2 + 1

(t2 + 1)2
where t =

145

444
.
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Can we do better than

E (Q) ≃ Z2 × Z4 × Z8

or

E (Q) ≃ Z2 × Z8 × Z3?
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Elliptic Surfaces

We will focus on the cases where the quartic curve
Ek : y2 = (1− x2) (1 − k2 x2) has torsion subgroup Ek(Q)tors ≃ Z2 × Z8.
We express our results in terms of elliptic surfaces.

Consider the affine curve

C =

{

t = (a : b) ∈ P1

∣

∣

∣

∣

a b
(

a4 − b4
) (

a4 − 6 a2 b2 + b4
)

6= 0

}

.

Fix the rational functions A, B : C → P1 defined by

A(t) = −27
(

k4 + 14 k2 + 1
)

B(t) = −54
(

k6 − 33 k4 − 33 k2 + 1
) where k =

t4 − 6 t2 + 1

(t2 + 1)
2

and consider the surface

E =

{

[

(X : Y : Z ), t
]

∈ P2 × C

∣

∣

∣

∣

Y 2 Z = X 3 + A(t)X Z 2 + B(t)Z 3

}

.

2012 Atkin Memorial Lecture and Workshop E(Q) × Z2 × Z8 × Z4?



Motivation
Elliptic Curves

Ranks of y2 = (1 − x2) (1 − k2 x2)

Examples
Lower Bounds
2-Descent

Theorem (G–, 2008)

With respect to E → C which sends
[

(X : Y : Z ), t
]

7→ t, the
variety E is an elliptic surface. Each of the fibers Et is semistable.

We have two sections

P : t 7→







12
t8 − 4 t6 − 26 t4 − 4 t2 + 1

(t2 + 1)4
: 0 : 1



 , t





Q : t 7→







12
t8 − 4 t6 − 12 t5 − 2 t4 + 20 t2 + 12 t + 1

(t2 + 1)4
: 864

t7 − 5 t5 − 4 t4 + 3 t3 + 4 t2 + t

(t2 + 1)5
: 1



 , t





All elliptic curves E over a number field K with torsion subgroup
〈P(t), Q(t)〉 ≃ Z2 × Z8 arise from such a fiber, i.e., are birationally
equivalent to Et for some t ∈ C (K ).

The automorphisms σ : (a : b) 7→ (a− b : a+ b) and
τ : (a : b) 7→ (−a : b) act on C , yet leave A and B invariant.
Moreover, D8 = 〈σ, τ〉 →֒ Aut(C ) is the dihedral group.
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Proposition (A. O. L. Atkin and François Morain, 1993)

The elliptic curve C1 : v
2 = u3 − 8 u − 32 has Mordell-Weil group

C1(Q) ≃ Z2 × Z as generated by (u : v : 1) = (12 : 40 : 1).

One can construct infinitely many fibers Et having positive rank via
the map C1 → C defined by (u : v : 1) 7→ 2 (u − 9)/(3 u + v − 2).

Theorem (Garikai Campbell and G–, 2003)

The elliptic curve C2 : v
2 = u3 − u2 − 9 u + 9 has Mordell-Weil

group C2(Q) ≃ Z2 × Z2 × Z as generated by (u : v : 1) = (5 : 8 : 1).

One can construct infinitely many fibers Et having positive rank via
the map C2 → C defined by (u : v : 1) 7→ t = (u + v − 3)/(2 u).
Indeed, upon setting w = 3 (u2 − 2 u + 4 v + 9)/(u2 − 18 u + 9), we
have a section

R : (u : v : 1) 7→









3 (w2
− 2 w − 3)4 + 12 (w2

− w − 3) (w2 + 2 w − 3)3

(w4 − 2 w2 + 9)2

:
54 (w4

− 9) (w2
− 2 w − 3) (w2 + 2 w − 3)3

(w4 − 2 w2 + 9)3
: 1



 ,
u + v − 3

2 u




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Infinite Families

There are infinitely many choices of rational t such that

Et : y
2 = (1 − x2) (1− k2 x2) where k =

t4 − 6 t2 + 1

(t2 + 1)
2

has torsion subgroup Et(Q) ≃ Z2 × Z8 and rank r ≥ 1. These choices of
t correspond to rational points on elliptic curves.

Open Questions

Are there other elliptic curves besides C1 and C2 which work?

Is there a curve of genus 0 which gives Et having rank r ≥ 1?

Are there infinitely many rational t which give Et having rank r ≥ 2?
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Finding Curves of High Rank

Approach #1

Fix a square-free integer D, and consider the quadratic twist

E (D) : Y 2 = X 3 + D2 AX + D3 B.

This is very efficient (i.e., no redundant curves), but E (D)(Q)tors changes
with each D.

Approach #2

Fix polynomials A = A(t) and B = B(t) such that
∆(t) = −16

(

4A3 + 27B2
)

6= 0, and consider the elliptic surface

Et : Y 2 = X 3 + A(t)X + B(t).

This is not very efficient (i.e., different t’s may give the same curves),
polynomials can be chosen to fix Et(Q)tors for all t.
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Algorithm

#1. Classify those elliptic curves E over Q with torsion subgroup
E (Q)tors ≃ Z2 × Z8. Express these curves as an elliptic surface Et .

#2. Find a criterion on t such that any t ∈ Q may be associated to an
element from a fundamental region α < t < β.

#3. Create a list of candidate elliptic curves Et for this fundamental
region.

#4. Compute the 2-Selmer ranks to find upper bounds on the
Mordell-Weil ranks.

#5. Compute the Mordell-Weil ranks.
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E (Q) ≃ Z2 × Z8 × Z3

Author(s) Fiber t Year Discovered

Connell, Dujella 5/29 2000

Dujella

18/47
87/407
143/419
145/444
352/1017

2001
2006
2006
2006
2008

Dujella, Rathbun
230/923
223/1012

2006
2006

Campbell, Goins 15/76 2003

Campbell, Goins (with Watkins) 19/220 2005

Rathbun

47/219
74/207
17/439
159/569

2003
2006
2006
2006

Flores - Jones - Rollick - Weigandt
(with Rathbun)

86/333
101/299
65/337

2007
2007
2007

Fisher

47/266
104/321
97/488
145/527
119/579
223/657
161/779
177/815
76/999

285/1109

2009
2009
2009
2009
2009
2009
2009
2009
2009
2009

http://web.math.pmf.unizg.hr/~duje/tors/z2z8.html
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Fundamental Region

Theorem (G–, 2006)

Fix a rational number t 6= −1, 0, 1 and consider

Et : y2 =
(

1− x2
) (

1− k2 x2
)

where k =
t4 − 6 t2 + 1

(t2 + 1)2
.

D8 = 〈σ, τ
∣

∣ σ4 = τ2 = 1, τ σ τ = σ−1〉 in terms of

σ : t 7→ t − 1

t + 1
and τ : t 7→ −t.

We may assume that t satisfies 0 < t <
√
2− 1.

Remark: Given a bound N , choose coprime integers a and b satisfying

0 <
(

1 +
√
2
)

a < b < N and set t =
a

b
.
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Isogeny Graph

D ′
t D ′′′

t

Et

φ

φ̂ ❏❏
❏❏

❏❏
❏❏

❏❏
❏ E ′′

t

❏❏
❏❏

❏❏
❏❏

❏❏

C ′
t

ttttttttttt

E ′
t

φ′

φ̂′

ttttttttttt

C ′′′
t

C ′′
t
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Isogeny Graph

Curve Weierstrass Model Y 2 = X3 + A X + B Torsion

Et

A = −27
(

k
4
+ 14 k

2
+ 1

)

B = −54
(

k
6
− 33 k

4
− 33 k

2
+ 1

)
Z2 × Z8

E′t

A = −27
(

k
4
− k

2
+ 1

)

B = −27
(

2 k
6
− 3 k

4
− 3 k

2
+ 2

)
Z2 × Z4

C′

t

A = −27
(

k
4
− 60 k

3
+ 134 k

2
− 60 k + 1

)

B = −54
(

k
6
+ 126 k

5
− 1041 k

4
+ 1764 k

3
− 1041 k

2
+ 126 k + 1

)
Z8

D′

t

A = −27
(

k
4
+ 60 k

3
+ 134 k

2
+ 60 k + 1

)

B = −54
(

k
6
− 126 k

5
− 1041 k

4
− 1764 k

3
− 1041 k

2
− 126 k + 1

)
Z8

E′′t

A = −27
(

k
4
− 16 k

2
+ 16

)

B = −54
(

k
6
+ 30 k

4
− 96 k

2
+ 64

)
Z2 × Z2

C′′

t

A = −27
(

16 k
4
− 16 k

2
+ 1

)

B = −54
(

64 k
6
− 96 k

4
+ 30 k

2
+ 1

)
Z4

C′′′

t

y
2

= x
3
− 2

(

1 + 24 t + 20 t
2
+ 24 t

3
− 26 t

4
− 24 t

5
+ 20 t

6
− 24 t

7
+ t

8
)

x
2

+
(

1 − 2 t − t
2
)8

x

Z2

D′′′

t

y
2

= x
3
− 2

(

1 − 24 t + 20 t
2
− 24 t

3
− 26 t

4
+ 24 t

5
+ 20 t

6
+ 24 t

7
+ t

8
)

x
2

+
(

1 + 2 t − t
2
)8

x

Z8
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Define the curves and homogeneous spaces

Et : y
2 =

(

1− x2
)(

1− k2 x2
)

E ′
t : y

2 =
(

1− x2
)(

1− κ′
2
x2
)

E ′′
t : y2 =

(

1 + x2
)(

1 + k ′2 x2
)

Cd : d w 2 =
(

1− d z2
)(

1− d k2 z2
)

C′
d : d w 2 =

(

1 + d z2
)(

1 + d κ2 z2
)

C′′
d : d w 2 =

(

1 + d z2
)(

1 + d k ′2 z2
)

where

κ =
1− k

1 + k
, κ′ =

1− k ′

1 + k ′
, and k2 + k ′2 = 1.

D ′′′
t

// E ′′
t

φ̂′

// E ′
t

φ̂ // Et

C′′′
d

��

OO 88♣♣♣♣♣♣♣♣♣♣♣♣♣ Φ′

// C′′
d

��

OO
ψ′

88♣♣♣♣♣♣♣♣♣♣♣♣♣♣ Φ // C′
d

��

OO
ψ

88♣♣♣♣♣♣♣♣♣♣♣♣♣♣

2012 Atkin Memorial Lecture and Workshop E(Q) × Z2 × Z8 × Z4?



Motivation
Elliptic Curves

Ranks of y2 = (1 − x2) (1 − k2 x2)

Examples
Lower Bounds
2-Descent

Descent via 4-Isogeny

Theorem (G–, 2006)

There are 2-isogenies φ : Et → E ′
t and φ′ : E ′

t → E ′′
t .

If E ≃ Et and E ′ ≃ E ′
t , then

∣

∣

∣

∣

E (Q)

2E (Q)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

E ′(Q)

φ
(

E (Q)
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

E (Q)

φ̂
(

E ′(Q)
)

∣

∣

∣

∣

∣

.

Write k = p/q for relatively prime integers p and q. The image of
δφ (of δφ̂, respectively) is the set of those square-free divisors d of

p q (of p2 − q2, respectively) such that Cd (C′
d , respectively) has a

Q-rational point.
(

δφ̂ ◦ ψ
)

(z ,w) ≡
(

δφ ◦ ψ′
)

(z ,w) ≡ d mod (Q×)2 for the maps

ψ : C′
d → Et

ψ′ : C′′
d → E ′

t

(z ,w) 7→
(

1− d κ z2

1 + d κ z2
,

4 d κ z w

(1 + κ) (1 + d κ z2)2

)

(z ,w) 7→
(

1− d k ′ z2

1 + d k ′ z2
,

4 d k ′ z w

(1 + k ′) (1 + d k ′ z2)2

)
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Example

Proposition (Samuel Ivy, Brett Jefferson, Michele Josey, Cheryl Outing,
Clifford Taylor, and Staci White, 2008)

When t = 9/296 we have

〈−1, 6477590, 2, 7〉 ⊆ δφ̂ ⊆ 〈−1, 6477590, 2, 7, 37〉.

Hence Et has Mordell-Weil group Et(Q) ≃ Z2 × Z8 × Z3 if and only if at
least one of the following homogeneous spaces corresponding to d = 37
contains a rational point (z ,w):

C′
37 : w 2 = 2172344348297474273125 z4

+ 58712815268370607681 z2+ 21779862847488;

C′′
37 : w 2 = 2188470374735494973797 z4

+ 60017913360731350081 z2+ 23515280943436800.
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Challenge Problem Revisited

E : y2 = x3 +
(

5−
√
5
)

x2 +
√
5 x

The curve has invariant j(E ) = 86048− 38496
√
5.

The curve has conductor fE = p62 p
2
5 in terms of the prime ideals

p2 = 2Z[ϕ] and p5 =
√
5 Z[ϕ], where ϕ = 1+

√
5

2 .

This curve is 2-isogeneous to (a quadratic twist of) its Galois
conjugate.

Theorem (G–, 1999)

The elliptic curve E is modular. More precisely, there is a modular form
f (q) ∈ S2

(

Γ0(160), ǫ
)

and a Dirichlet character χ : Z[ϕ] → C such that
χ2 = ǫ ◦ N

Q(
√
5)/Q and ap(f ) = χ(p) ap(E ) for almost all primes p.

Question

Did you compute the Mordell-Weil group E
(

Q(
√
5)
)

?
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Questions?
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