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1 Introduction

Let f and g be two modular forms of weights k and l on a congruence
subgroup Γ. The nth Rankin-Cohen bracket of f and g is defined by the
formula

[f, g]n(z) =
∑

r+s=n

(−1)r

(
n + k − 1

s

)(
n + l − 1

r

)
f (r)(z)g(s)(z),

where as in [8] we denote

f (r)(z) =

(
1

2πi

d

dz

)r

f(z)

=

(
q

d

dq

)r

f(z).

for q = e2πiz.
For example, we have

[f, g]0 = fg,

[f, g]1 = kfg′ − lf ′g,

...

Differential operators on modular forms were studied in [5] and the Rankin-
Cohen brackets were introduced by H. Cohen [1] and further studied by D.
Zagier [7, 8]. Here we use the normalization used in [8] to guarantee that for
all n we have [f, g]n ∈ Z[[q]] when f, g ∈ Z[[q]].

The purpose of this note is to prove the following theorem:
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Theorem 1.1 There are only a finite number of triples (F, G, n) with the
property that F and G are normalized eigenforms and [F, G]n is again an
eigenform. The following describes all the possibilities:

1. We have [E4, E6]0 = E10 and [E4, E10]0 = [E6, E8]0 = E14.

2. If k, l ∈ {4, 6, 8, 10, 14} and n ≥ 1 with k+l+2n ∈ {12, 16, 18, 20, 22, 26},
then

[Ek, El]n = cn(k, l)∆k+l+2n

where

cn(k, l) = − 2l

Bl

(
n + l − 1

n

)
+ (−1)n+1 2k

Bk

(
n + k − 1

n

)
.

3. If k ∈ {4, 6, 8, 10, 14} and n ≥ 0 with l, k+l+2n ∈ {12, 16, 18, 20, 22, 26},
then

[Ek, ∆l]n = cn(l)∆k+l+2n

where

cn(l) =

(
n + l − 1

n

)
.

This theorem generalizes the results of Duke [2] and Ghate [3]. Their
result is included in the n = 0 case of our theorem. The results of Zagier
[7] allow the argument of Ghate to go through with slight modifications.
We expect that a similar argument, along the lines of [4], would work for
non-trivial level.

This paper is organized as follows. In the second section we recall two
theorems from [8] that will be used in the proof of the main theorem. The
proof of the main theorem and also the list of all possible cases for the level
1 case is included in the third section.

The authors of this note were introduced to the Rankin-Cohen brackets
during a lecture by YoungJu Choie at the Web of Modularity Conference at
the University of Illinois at Urbana-Champagne in June of 2003. We would
like to thank Professor Choie for useful communications and the University
of Illinois and the conference organizers for their hospitality.
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2 Connection to L-functions

Let Γ be a congruence subgroup, k an integer, and H the upper-half-plane.

For

(
a b
c d

)
∈ Γ and z ∈ H set

Jk(γ, z) = (cz + d)−k.

If k > 2 we have the Eisenstein series

EΓ
k (z) =

∑
γ∈Γ∞\Γ

Jk(γ, z),

where Γ∞ = {γ ∈ Γ | γ.i∞ = i∞}. When Γ = SL2(Z) we will drop the
superscript Γ. In this case, Ek has an explicit Fourier expansion given by

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)e2πinz.

With appropriate normalization, Proposition 6 of [7] now reads as follows:

Theorem 2.1 Let k1, k2, k and n be integers satisfying k2 ≥ k1 + 2 > 2 and
k = k1 + k2 + 2n. Let f(z) =

∑∞
j=1 aje

2πijz/w and g(z) =
∑∞

j=0 bje
2πijz/w be

two modular forms for Γ of respective weights k and k1. We have

〈f, [g, EΓ
k2

]n〉 =
Γ(k − 1)Γ(k2 + n)wk−n

(4π)k−1n!Γ(k2)

∞∑
j=1

ajbj

jk1+k2+n−1
.

Where 〈·, ·〉 is the usual Petersson inner product

〈f, g〉 =

∫
SL2(Z)\H

f(z)g(z)
dx dy

y2

and w = [Γ′∞ : Γ∞] for Γ′ = SL2(Z). We also have the following theorem for
the case where Γ = SL2(Z) and g = Ek1 :

Theorem 2.2 Let k1, k2 ≥ 4 be even integers with k1 6= k2. Let n and f be
as above. Then

〈f, [Ek1 , Ek2 ]n〉 = (−1)k2/2 2k1

Bk1

2k2

Bk2

Γ(k − 1)

n!2k−1Γ(k − n− 1)

× L∗(f, k − n− 1)L∗(f, k2 + n).

Where L∗(f, s) = (2π)−sΓ(s)L(f, s) and L(f, s) is the standard L-function of
f . This theorem is the corollary to Proposition 6 of [7]. We note that when
n is even the identity is valid for k1 = k2. See also [6].
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3 Proof of the theorem

We now prove the theorem. Suppose the triple (F, G, n) satisfies the condi-
tions of the theorem. Let the weights of F and G be u, v respectively. Set
k = u + v + 2n. Let H = [F, G]n and

F (z) =
∞∑

j=0

Aje
2πijz

G(z) =
∞∑

j=0

Bje
2πijz

H(z) =
∞∑

j=0

Cje
2πijz.

It is then clear from the definition that

Cj =
∑

m+t=j

AmBt

∑
r+s=n

mrts(−1)r

(
n + u− 1

r

)(
n + v − 1

s

)
. (3.1)

In particular, if A0 = B0 = 0 then C0 = C1 = 0. The assumption that H is
an eigenform then implies that H ≡ 0. Hence at least one of F and G must
not be a cusp form. There are two cases to be considered:

First Case. In this case F is a cusp form and G = Ev. Then H will be
an eigenform in Sk(SL2(Z)). Suppose dim Sk(SL2(Z)) 6= 1. Then there will
be a cusp form U ∈ Sk(SL2(Z)) with the property that 〈U,H〉 = 0. Let
U(z) =

∑∞
j=1 Dje

2πijz. Then Theorem 2.1 implies

∞∑
j=1

DjAj

ju+v+n−1
= 0.

However, since U and F are cuspidal, we know the series
∑∞

j=1
DjAj

js has an

Euler product which is absolutely convergent for <(s) > u + v
2

+ n. Since
v > 2 we have u + v + n− 1 > u + v

2
+ n. Consequently, there is not a cusp

form U with the above property, and so H can be an eigenform only when
dim Sk(SL2(Z)) = 1.
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Second Case. Here F = Eu and G = Ev. If n = 0, the result is already
contained in [3]. So we assume n > 0. First we consider u 6= v. In this case
it is easily seen that the function H must be a cusp form of weight u+v+2n.
If dim Sk(SL2(Z)) 6= 1 then we can choose an eigenform U ∈ Sk(SL2(Z))
with the property that 〈U, [Eu, Ev]n〉 = 0. This combined with Theorem 2.2
implies

L∗(U, u + v + n− 1)L∗(U, v + n) = 0.

Now, it is well-known that L∗(U, s) does not vanish for <(s) > u+v+2n+1
2

,
this region being the domain of absolute convergence of the Euler product.
Since s = u + v + n − 1 is in the domain of the absolute convergence, the
first term does not vanish. For the second term, if v + n is not in the
domain of absolute convergence then we use the functional equation to obtain
L∗(U, k − v − n) = (−1)k/2L∗(U, u + n). Since u 6= v are even numbers then
u + n must belong to the domain of absolute convergence.

Now we consider the case where u = v. Since

[f, g]n = (−1)n[g, f ]n

then for n odd we must have [Eu, Eu]n = 0. Hence we assume that n is even.
We separate the n = 2 case as a lemma:

Lemma 3.1 The cusp form [Eu, Eu]2 is not an eigenform unless u ∈ {4, 6, 8}.

Proof. For this we proceed with an explicit calculation of the Fourier expan-
sion of [Eu, Eu]2. We have

Eu(z) = 1− 2u

Bu

∞∑
n=1

σu−1(n)qn,

E ′
u(z) = − 2u

Bu

∞∑
n=1

nσu−1(n)qn,

E ′′
u(z) = − 2u

Bu

∞∑
n=1

n2σu−1(n)qn.
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Then a straightforward calculation shows that the function given by

f(z) =
−Bu

2u2(u + 1)
[Eu, Eu]2(z)

= q +
∞∑

N=2

N2σu−1(N) +
2

Bu

∑
m+n=N
m,n≥1

nσu−1(n)σu−1(m) [u(m− n) + m]

 qN ,

is the normalized form associated with [Eu, Eu]2. Denote the nth Fourier
coefficient of f by E(n). If f is a normalized eigenform then

E(4) = E(2)2 − 22u+3. (3.2)

From equation 3.1 we have

E(2) = 4 + 2u+1 +
2

Bu

and

E(4) = 16σu−1(4) +
2

Bu

(
σu−1(3)(−4u + 6) + 4σu−1(2)2

)
.

Then 3.2 translates to an equation for X = 2/Bu:

X2 +
(
8σu−1(2)− σu−1(3)(−4u + 6)− 4σu−1(2)

2
)
X

+
(
16σu−1(2)2 − 22u+3 − 16σu−1(4)

)
= 0.

(3.3)

In order for this equation to have a rational solution, the discriminant D
must be a perfect square of an integer. The discriminant of 3.3 is

D =
(
4σu−1(2)2 + σu−1(3)(−4u + 6)− 8σu−1(2)

)2

− 4
(
16σu−1(2)

2 − 22u+3 − 16σu−1(4)
)

=
(
4u + 3u−1(−4u + 6) + (2− 4u)

)2
+ 22u+5 − 2u+5.

Let Y = 4u + 3u−1(−4u + 6) + (2− 4u), and then D = Y 2 + 22u+5 − 2u+5.
As 27u > 28 for u ≥ 4 then it easily follows that 22u+5 − 2u+5 > 25Y + 28.
Thus D > (Y + 16)2 for u ≥ 4.

As (4/3)u > 4 · 17u/3c for some c < 1 and u ≥ 22 then it follows that

17 · 22u+1 > 22u+5 + 22u+1c > 22u+5 + 23 · 17u3u−1.

6



This gives 2 · 17Y + 172 > 22u+5 − 2u+5 and so (Y + 17)2 > D. So for u ≥ 22
we have

(Y + 17)2 > D > (Y + 16)2

and so D cannot be a square of an integer. For u ∈ {10, 12, 14, 16, 18, 20}
direct calculation shows that the discriminant is not a square. It follows that
equation 3.3 has no rational solution and so f cannot be an eigenform, for
u ≥ 10.

If u ∈ {4, 6, 8} then the respective f is in fact an eigenform as for such u
the space S2u+4(SL2(Z)) is one-dimensional. �

We have the following interesting non-vanishing result:

Corollary 3.2 Suppose k > 20 and k ≡ 0 (mod 4). Then there are two
eigenforms f, g ∈ Sk(SL2(Z)) with L∗(f, k

2
) 6= 0 and L∗(g, k

2
) 6= 0.

Proof. Let u = 1
2
k − 2. By Lemma 3.1 we know that [Eu, Eu]2 is not an

eigenform. This implies that there must exist at least two eigenforms f and
g in Sk such that 〈f, [Eu, Eu]2〉 6= 0 and 〈g, [Eu, Eu]2〉 6= 0. An application of
Theorem 2.2 finishes the proof. �

We can now treat [Eu, Eu]n for general even n. By Theorem 2.2, [Eu, Eu]n
will have non-zero projection of an eigenform f ∈ S2u+2n(SL2(Z)) if and only
if L∗(f, u + n) 6= 0. By the corollary, if 2u + 2n > 20 then there are at least
two eigenforms f and g with this property, implying that [Eu, Eu]n cannot
be an eigenform. The numbers cn(k, l) and cn(l) are easily calculated from
3.1.
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