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1 Introduction

Let f and g be two modular forms of weights k£ and [ on a congruence
subgroup I'. The n'" Rankin-Cohen bracket of f and g is defined by the
formula

Fal)= 3 (TR (T s

S r
r4+s=n

where as in [8] we denote

1) = (5m) 1)

= (qd%)rf(Z)-

[f?g]():fg?
[f7g]1 :kfg/_lf/ga

for ¢ = 2™,

For example, we have

Differential operators on modular forms were studied in [5] and the Rankin-
Cohen brackets were introduced by H. Cohen [1] and further studied by D.
Zagier [7, 8]. Here we use the normalization used in [8] to guarantee that for
all n we have [f, g, € Z[[q]] when f, g € Z[[q]].

The purpose of this note is to prove the following theorem:
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Theorem 1.1 There are only a finite number of triples (F,G,n) with the
property that F' and G are normalized eigenforms and [F, G|, is again an
eigenform. The following describes all the possibilities:

1. We hCL’UG [E4, EG]Q = Elg and [E4, ElO]O = [EG, Eg]o = E14.

2. Ifk,l € {4, 6,8, 10, 14} andn > 1 with k+1+2n € {12, 16, 18, 20,22,26},
then
[Ek, El]n = Cn(k', Z)Ak+l+2n

where

20 fn+1—1 2k (n+k—1
n(k ) = —— S D )
el == ("I ey B (MR
3. Ifk € {4,6,8,10,14} andn > 0 with [, k+1+2n € {12, 16, 18, 20, 22, 26},
then
[EkaAl]n = Cn(l)Ak+l+2n

ell) = <n+72—1).

This theorem generalizes the results of Duke [2] and Ghate [3]. Their
result is included in the n = 0 case of our theorem. The results of Zagier
[7] allow the argument of Ghate to go through with slight modifications.
We expect that a similar argument, along the lines of [4], would work for
non-trivial level.

This paper is organized as follows. In the second section we recall two
theorems from [8] that will be used in the proof of the main theorem. The
proof of the main theorem and also the list of all possible cases for the level
1 case is included in the third section.

The authors of this note were introduced to the Rankin-Cohen brackets
during a lecture by YoungJu Choie at the Web of Modularity Conference at
the University of Illinois at Urbana-Champagne in June of 2003. We would
like to thank Professor Choie for useful communications and the University
of Illinois and the conference organizers for their hospitality.
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2 Connection to L-functions

Let I' be a congruence subgroup, k an integer, and $) the upper-half-plane.

For (a b)GFandzef_)set
c d

Je(7,2) = (e + d) ™.
If kK > 2 we have the Eisenstein series
YET o \I'

where I'yy = {7y € I'|7y.i00 = ioco}. When I' = SLy(Z) we will drop the
superscript I'. In this case, Ej has an explicit Fourier expansion given by

With appropriate normalization, Proposition 6 of [7] now reads as follows:

Theorem 2.1 Let ky, ko, k and n be integers satisfying ks > ki +2 > 2 and
k= ki +ky+2n. Let f(z) = Y22, a;e*™*/" and g(z) = Y22 b;e*™ /" be
two modular forms for I of respective weights k and k. We have
['(k — 1) (ky + n)wkF™ & a;b;
Iy _ 395
(f:19, By, ln) = (47)F 0l (ky) ; jhithatn—1"

Where (-, -) is the usual Petersson inner product

B Z—dxdy
<mwéwmﬂmaf

and w = [, : T'y] for IV = SLy(Z). We also have the following theorem for
the case where I' = SLy(Z) and g = Ej,:

Theorem 2.2 Let ky, ko > 4 be even integers with ki # ky. Let n and f be
as above. Then
2k 2k I'k—1)
By, Biyln) = (—1)R2 22 22
<f7 [ k1s k2] > ( ) Bkl Bkz n|2k—1r(k —n — ]_)
X L*(f,k—n—1)L"(f ks +n).

Where L*(f,s) = (2m)°T'(s)L(f, s) and L(f, s) is the standard L-function of
f. This theorem is the corollary to Proposition 6 of [7]. We note that when
n is even the identity is valid for k; = ky. See also [6].
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3 Proof of the theorem

We now prove the theorem. Suppose the triple (F, G, n) satisfies the condi-
tions of the theorem. Let the weights of /' and G be u, v respectively. Set
k=u+uv+2n. Let H = [F,G], and

F(z) = Z Aje%ijz
j=0

G(z) = Z Bjezmjz
=0

H(z)= Z Cje*™%,
j=0

It is then clear from the definition that

=3 4.5 Y mrf(—nr(”*?_l) (”*:_1). (3.1)

m-+t=j r+s=n

In particular, if Ag = By = 0 then Cy = C; = 0. The assumption that H is
an eigenform then implies that H = 0. Hence at least one of F' and G must
not be a cusp form. There are two cases to be considered:

First Case. In this case F' is a cusp form and G = F,. Then H will be
an eigenform in Sy (SLy(Z)). Suppose dim Sy (SLy(Z)) # 1. Then there will
be a cusp form U € Si(SL2(Z)) with the property that (U, H) = 0. Let
U(z) = 372, D;je*™*. Then Theorem 2.1 implies

E :LAJ‘:Q
A ju+v+n—1
J=1

. . . Dj;A;
However, since U and F' are cuspidal, we know the series Z?‘;l o has an

Euler product which is absolutely convergent for R(s) > u + § +n. Since
v > 2 we have u +v+n —1>u+ 35 +n. Consequently, there is not a cusp

form U with the above property, and so H can be an eigenform only when
dim Si(SLy(Z)) = 1.




Second Case. Here F' = F, and G = FE,. If n = 0, the result is already
contained in [3]. So we assume n > 0. First we consider u # v. In this case
it is easily seen that the function H must be a cusp form of weight u+ v+ 2n.
If dim Sg(SL2(Z)) # 1 then we can choose an eigenform U € Si(SLy(Z))
with the property that (U, [Ey, E,],,) = 0. This combined with Theorem 2.2
implies

L*(Uu+v+n—1)L"(Uwv+n)=0.

Now, it is well-known that L*(U,s) does not vanish for R(s) > wHe£2ntl
this region being the domain of absolute convergence of the Euler product.
Since s = u + v +n — 1 is in the domain of the absolute convergence, the
first term does not vanish. For the second term, if v + n is not in the
domain of absolute convergence then we use the functional equation to obtain
L*(U,k —v —n) = (—=1)*2L*(U,u +n). Since u # v are even numbers then
u + n must belong to the domain of absolute convergence.
Now we consider the case where u = v. Since

then for n odd we must have [E,, E,], = 0. Hence we assume that n is even.
We separate the n = 2 case as a lemma:

Lemma 3.1 The cusp form [E,, E,|s is not an eigenform unless u € {4,6,8}.

Proof. For this we proceed with an explicit calculation of the Fourier expan-
sion of [E,, FE,]o. We have

2 —

EQIL(Z> 5 no_u—l(n>q s
Bu n=1

2 = - 24 o 4 (n)e”



Then a straightforward calculation shows that the function given by

—B,

f(z) = m[Equu]Q(z)
=q+ Z N%o,_1(N) + % noy—1(n)ou—1(m) [u(m —n) + m|

is the normalized form associated with [E,, F,]>. Denote the n'® Fourier
coefficient of f by E(n). If f is a normalized eigenform then

E(4) = E(2)* — 2213, (3.2)

From equation 3.1 we have

2
E@2)=4+2"" 4+ —
(2) =4+ + 3

u

and

E(4) = 160'u,1(4) + Bi (Uu,1(3)<—4u + 6) + 40—u71(2)2) .

Then 3.2 translates to an equation for X = 2/B,:

X?+ (80y-1(2) — 0u_1(3)(—4u+ 6) — 40,_1(2)*) X

+ (160,,-1(2)* — 2°“** — 160,_1(4)) = 0. (3:3)

In order for this equation to have a rational solution, the discriminant D
must be a perfect square of an integer. The discriminant of 3.3 is

D = (40, 1(2)% + 71 (3)(—4u + 6) — 80, 1(2))’
— 4 (160,-1(2)* — 22" — 160,-1(4))
— (4% 4 3" (—du + 6) 4 (2 — 4u))? + 22410 — 2uF5,
Let Y = 4%+ 3“1 (—4u+6) + (2 — 4u), and then D = Y2 4 224+5 — 2u+5,
As 27u > 2% for u > 4 then it easily follows that 2245 — 2uF5 > 25y 4 28,

Thus D > (Y + 16)? for u > 4.
As (4/3)" > 4 - 17u/3c for some ¢ < 1 and u > 22 then it follows that

17 . 22u+1 > 22u+5 _|_ 22u+lc > 22u+5 + 23 . 17u3u—1‘



This gives 2+ 17Y + 172 > 2245 — 2¢5 and so (Y +17)? > D. So for u > 22
we have
(Y +17)* > D > (Y +16)*

and so D cannot be a square of an integer. For u € {10,12,14,16,18,20}
direct calculation shows that the discriminant is not a square. It follows that
equation 3.3 has no rational solution and so f cannot be an eigenform, for
u > 10.

If u € {4,6,8} then the respective f is in fact an eigenform as for such u
the space Soy14(SLa(Z)) is one-dimensional. [

We have the following interesting non-vanishing result:

Corollary 3.2 Suppose k > 20 and k = 0 (mod 4). Then there are two
eigenforms f,g € Si(SLo(Z)) with L*(f, g) # 0 and L*(g, %) £ 0.

Proof. Let u = %k — 2. By Lemma 3.1 we know that [F,, E,]> is not an
eigenform. This implies that there must exist at least two eigenforms f and
g in Sy such that (f, [E,, E,]2) # 0 and (g, [E., Ey]2) # 0. An application of
Theorem 2.2 finishes the proof. [

We can now treat [E,, E, ], for general even n. By Theorem 2.2, [E,, E,],
will have non-zero projection of an eigenform f € Ss, 2, (SLs(Z)) if and only
if L*(f,u+n) # 0. By the corollary, if 2u 4+ 2n > 20 then there are at least
two eigenforms f and g with this property, implying that [E,, E,], cannot
be an eigenform. The numbers ¢, (k,[) and ¢,(l) are easily calculated from
3.1.
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