
The BMM Global-Local bijection for GL(n,q)

Bhama Srinivasan

University of Illinois at Chicago

Ban�, March 2014

Bhama Srinivasan (University of Illinois at Chicago) Global-Local Bijection Ban�, March 2014 1 / 29



Unipotent blocks of GL(n; q)

Let Gn = GL(n; q), ` a prime not dividing q, e the order of q mod `.

Unipotent characters of Gn are constituents of Ind
Gn
B (1) (B a Borel)

and are indexed by partitions of n.

Denoted by ��, � a partition of n.

Theorem (Fong-Srinivasan) ��, �� are in the same `-block if and

only if �, � have the same e-core.
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Unipotent blocks of GL(n; q)

Alternatively: Unipotent blocks classi�ed by pairs (�; k) (e-core,

weight)

If B $ (�; k), then �� 2 B i� �� is a constituent of < RGn
L (��),

where (L; ��) is an e-cuspidal pair

L (e-split Levi) is isomorphic to a product of k copies of tori of order

qe � 1 and Gm, Gm has e-cuspidal ��.

N(L)=L isomorphic to W (L; �) = Ze o Sk = G (e; 1; k)

Bhama Srinivasan (University of Illinois at Chicago) Global-Local Bijection Ban�, March 2014 3 / 29



Unipotent blocks of GL(n; q)

Brou�e, Malle, Michel: Global to Local Bijection for Gn:

Isometry IGL maps ��� , character of WG (L; �),

to ��, constituent of R
G
L (�) (up to sign),

where �� is e-quotient of �.
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Unipotent blocks of GL(n; q)

Similarly, have Isometry IML , M=e-split Levi subgroup containing L,

can choose M = Gm � GL(k ; qe).

Then: RG
M I

M
L = IGL Ind

WG (L;�)
WM(L;�).

Bhama Srinivasan (University of Illinois at Chicago) Global-Local Bijection Ban�, March 2014 5 / 29



Unipotent blocks of GL(n; q)

Let L = Gn �GL(k ; qe), an e-split Levi subgroup of Gn+k . If � ` k ,

de�ne the Lusztig functor L� on [A] where A = �n>0An, An the

category of unipotent representations of Gn.

L�(��) = R
Gn+ke
L (�� � ��) where L = Gn � GL(k ; qe), and �; � are

partitions of n; k respectively.
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Unipotent blocks of GL(n; q)

Let �n = Ze o Sn, complex re
ection group.

Rep(�n) = Category of representations of �n over C and

Rep(�) = �nRep(�n).

Then [Rep(�)] has basis indexed by e-tuples of partitions.

Parabolic subgroup �n;k of �n+k is of the form �n � Sk where Sk is a

symmetric group.

Have Induction Rep(�n;k)! Rep(�n+k).
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Unipotent blocks of GL(n; q)

Reference: Shan-Vasserot, p.1010; Uglov 4.1, 4.2

Fock space F a vector space over C with standard basis

B1 = fj� >g indexed by all partitions of n > 0.

There is also a C-basis

B2 = f(�e ; se)g where �e runs over e-tuples of partitions, se is an

e-tuple of integers summing up to 0.

Remark: Regard �e as e-quotient, se as a label for an e-core of �.

Both can be obtained from the Young diagram of �.
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Unipotent blocks of GL(n; q)

An = category of unipotent representations of Gn.

If A = �n>0An , [A] (complexi�ed Grothendieck group) is

isomorphic to F as a C-vector space, since [A] also has a basis

indexed by partitions.

[Rep(�)] isomorphic to F (s), subspace of F with basis (�e ; s) for

�xed s. Both have bases running over e-tuples of partitions.
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Unipotent blocks of GL(n; q)

Heisenberg Lie algebra h , generators hBk jk 2 Z� f0gi

with relations [Bk ;B`] = k 1�q�2nk

1�q�2k �k;�`
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Unipotent blocks of GL(n; q)

Leclerc-Thibon: Commuting operators Vk (k > 1) in h acting on F .

Vk(j� >) =
X
�

(�1)�s(�=�)j� >

where the sum is over all � such that � is obtained from � by adding

k e-skew hooks, such that the tail of each skew hook is not upon the

head of another skew hook.

s is the leg length of the skew hook.

Bhama Srinivasan (University of Illinois at Chicago) Global-Local Bijection Ban�, March 2014 11 / 29



Unipotent blocks of GL(n; q)

More generally, we have V� 2 U(h) where � is a composition:

If � = f�1; �2; : : :g then V� = V�1:V�2 : : :.

Then S� =
P

� k��V�, operator in U(h), k�� are inverse Kostka

polynomials.
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Unipotent blocks of GL(n; q)

U(h) acts on [A]$ F by S� (basis B1 of partitions, indexing

unipotent characters).

Also, U(h) acts on F (s) $ [Rep(�)] by S�, (now on basis B2 of

e-tuples of partitions, indexing Rep(�).
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Unipotent blocks of GL(n; q)

Main theorems:

Theorem. S�, acting on F , can be identi�ed with Lusztig induction

L� on [A].

Theorem (Shan-Vasserot) Action of S� on F (s) is identi�ed with

ordinary induction in [Rep(�)].
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Unipotent blocks of GL(n; q)

Theorem. S�, acting on F , can be identi�ed with Lusztig induction

L� on [A].

Two applications:

(1) Interpretation of BMM bijection

(2) Connection between some Brauer characters and Lusztig

induction
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Unipotent blocks of GL(n; q)

(1) Interpretation of BMM Bijection:

Consider the map �! (��; s) where �� is the e-quotient of � and s

labels the e-core of �, between the basis B1 of all partitions j� > and

the basis B2 of (�e ; se) where �e are `-tuples of partitions.

Fix k ; � ` k . The action of S� 2 U(h) on B1, interpreted as on [A],

corresponds to Lusztig induction on the groups Gn. On the other

hand, the action on B2, interpreted as on [Rep�], corresponds to

ordinary induction on complex re
ection groups.
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Decomposition numbers

Work done on blocks and decomposition matrices of �nite reductive

groups: Dipper-James, Geck, Gruber, Hiss, Kessar, Malle .. e.g.

modular Harish-Chandra theory.

In Dipper-James theory, have q-Schur algebra Sn.
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Decomposition numbers

K ;O; k , `-modular system

Dipper-James theory: e is the order of q mod `. Here q 2 k ,

characteristic `.

The decomposition matrix of Sn is square, has entries the

multiplicities of irreducibles in Weyl modules.

There is a square part of the decomposition matrix of Gn, rows

indexed by unipotent characters, columns by Brauer characters.

These two matrices are the same!
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Decomposition numbers

(2) Back to space F $ [A] standard basis �� (unipotent characters).

Two canonical bases (Leclerc-Thibon, Uglov), analogous to Lusztig's

canonical bases.

G+(�) =
P
d����

G�(�) =
P
e����
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Decomposition numbers

By the work of Varagnolo-Vasserot on

decomposition matrix of Sn,

for large ` we have:

If �; � ` n, D = (d��) is the unipotent

part of the decomposition matrix of Gn.

If E = (e��), E is the inverse transpose of D.
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Decomposition numbers

The columns of D express the unipotent characters of Gn in terms of

Brauer characters.

Thus, the rows of E express the Brauer characters of Gn in terms of

unipotent characters.

Describe G�(�) =
P
e����.
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Decomposition numbers

Example of the inverse decomposition matrix E for n = 4, e = 2:0
BBBBBBBBBB@

4jj 1 0 0 0 0

31jj �1 1 0 0 0

22jj 1 �1 1 0 0

211jj �1 0 �1 1 0

1111jj 0 0 1 �1 1

1
CCCCCCCCCCA

G�(211) = ��4 � �22 + �211,

G�(22), G�(211), G�(1111) are Brauer characters.
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Decomposition numbers

Algorithm exists to compute these decomposition numbers in

principle.

We wish to describe some of them by Lusztig induction.
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Decomposition numbers

Theorem. Let � ` n, � = �+ e�, � ` m, � ` k , and let �0 be

e-regular. Then the Brauer character represented by G�(�) is equal

to the Lusztig generalized character

RGn
L (G�(�)� ��), where n=m+ke, L = Gm � GL(k ; qe).

Proof. Leclerc-Thibon have proved that G�(�) = S�G
�(�), so the

proof follows from S� = L�.
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Decomposition numbers

An example of a decomposition matrix D for n = 4, e = 4:0
BBBBBB@

4jj 1 0 0 0

31jj 1 1 0 0

211jj 0 1 1 0

1111jj 0 0 1 1

1
CCCCCCA
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Decomposition numbers

An example of the inverse of a decomposition matrix D for n = 6,

e = 2:

0
BBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0

�1 1 0 0 0 0 0 0 0 0

1 �1 1 0 0 0 0 0 0 0

�1 0 �1 1 0 0 0 0 0 0

�1 1 �1 0 1 0 0 0 0 0

1 �1 1 �1 �1 1 0 0 0 0

1 0 1 �1 �1 0 1 0 0 0

0 0 �1 1 1 �1 �1 1 0 0

0 0 1 �1 0 0 1 �1 1 0

0 0 0 0 0 0 �1 1 �1 1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCA

Here the rows are indexed as: 6; 51; 42; 412; 32; 313; 23; 2212; 214; 16

Source: GAP, MAPLE
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Decomposition numbers

In the above matrix:

The rows indexed by 16; 2212; 32; 214; 412 have interpretations in

terms of RGn
L , with L e-split Levi of the form GL(3; q2),

GL(2; q)� GL(2; q2), GL(4; q)� GL(1; q2), as Brauer characters.

Row indexed by 32: L = GL(3; q2) : RG
L (�3) = �32 � �42 + �51 � �6

Row indexed by 2212 is RG
L (�21) and

Row indexed by 16 is RG
L (�13).
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Decomposition numbers

Michel Brou�e's philosophy

:

BRAUER=LUSZTIG
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Decomposition numbers
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