The BMM Global-Local bijection for GL(n,q)

Bhama Srinivasan

University of Illinois at Chicago

Banff, March 2014

Bhama Srinivasan (University of Illinois at Chicago

Global-Local Bijection

3 Banff, March 2014 1 / 29

590

→ ∃ →

・ロト ・回ト ・ヨト

Let $G_n = GL(n, q)$, ℓ a prime not dividing q, e the order of $q \mod \ell$. Unipotent characters of G_n are constituents of $\operatorname{Ind}_{B}^{G_n}(1)$ (B a Borel) and are indexed by partitions of n.

Denoted by χ_{λ} , λ a partition of *n*.

590

Let $G_n = GL(n, q)$, ℓ a prime not dividing q, e the order of $q \mod \ell$. Unipotent characters of G_n are constituents of $\operatorname{Ind}_{B}^{G_n}(1)$ (B a Borel) and are indexed by partitions of n.

Denoted by χ_{λ} , λ a partition of *n*.

Theorem (Fong-Srinivasan) χ_{λ} , χ_{μ} are in the same ℓ -block if and only if λ , μ have the same *e*-core.

590

Alternatively: Unipotent blocks classified by pairs (λ, k) (*e*-core, weight)

If $B \leftrightarrow (\lambda, k)$, then $\chi_{\mu} \in B$ iff χ_{μ} is a constituent of $\langle R_{L}^{G_{n}}(\chi_{\lambda})$, where (L, χ_{λ}) is an *e*-cuspidal pair

L (*e*-split Levi) is isomorphic to a product of *k* copies of tori of order $q^e - 1$ and G_m , G_m has *e*-cuspidal χ_{λ} .

N(L)/L isomorphic to $W(L,\lambda) = \mathbf{Z}_e \wr S_k = G(e,1,k)$

Broué, Malle, Michel: Global to Local Bijection for G_n : Isometry I_{L}^{G} maps $\phi_{\mu^{*}}$, character of $W_{G}(L, \lambda)$, to χ_{μ} , constituent of $R_{I}^{G}(\lambda)$ (up to sign), where μ^* is *e*-quotient of μ .

Image: A matrix

DQA

Similarly, have Isometry I_L^M , M=e-split Levi subgroup containing L,

can choose $M = G_m \times GL(k, q^e)$.

Then: $R_M^G I_L^M = I_L^G \operatorname{Ind}_{W_M(L,\lambda)}^{W_G(L,\lambda)}$.

Let $L = G_n \times \operatorname{GL}(k, q^e)$, an *e*-split Levi subgroup of G_{n+k} . If $\mu \vdash k$, define the Lusztig functor \mathcal{L}_{μ} on $[\mathcal{A}]$ where $\mathcal{A} = \bigoplus_{n \ge 0} \mathcal{A}_n$, \mathcal{A}_n the category of unipotent representations of G_n .

 $\mathcal{L}_\mu(\chi_\lambda)=R_L^{G_{n+ke}}(\chi_\lambda imes\chi_\mu)$ where $L=G_n imes GL(k,q^e)$, and λ,μ are partitions of n,k respectively.

590

Let $L = G_n \times \operatorname{GL}(k, q^e)$, an *e*-split Levi subgroup of G_{n+k} . If $\mu \vdash k$, define the Lusztig functor \mathcal{L}_{μ} on $[\mathcal{A}]$ where $\mathcal{A} = \bigoplus_{n \ge 0} \mathcal{A}_n$, \mathcal{A}_n the category of unipotent representations of G_n .

 $\mathcal{L}_{\mu}(\chi_{\lambda}) = R_{L}^{G_{n+ke}}(\chi_{\lambda} \times \chi_{\mu})$ where $L = G_{n} \times GL(k, q^{e})$, and λ, μ are partitions of n, k respectively.

Let $\Gamma_n = \mathbb{Z}_e \wr S_n$, complex reflection group. $\operatorname{Rep}(\Gamma_n) = \operatorname{Category}$ of representations of Γ_n over \mathbb{C} and $\operatorname{Rep}(\Gamma) = \bigoplus_n \operatorname{Rep}(\Gamma_n)$. Then $[\operatorname{Rep}(\Gamma)]$ has basis indexed by *e*-tuples of partitions.

Parabolic subgroup $\Gamma_{n,k}$ of Γ_{n+k} is of the form $\Gamma_n \times S_k$ where S_k is a symmetric group.

Have Induction $\operatorname{Rep}(\Gamma_{n,k}) \to \operatorname{Rep}(\Gamma_{n+k})$.

Reference: Shan-Vasserot, p.1010; Uglov 4.1, 4.2

Fock space \mathcal{F} a vector space over \mathbb{C} with standard basis $\mathcal{B}_1 = \{|\lambda >\}$ indexed by all partitions of $n \ge 0$. There is also a \mathbb{C} -basis

 $\mathcal{B}_2 = \{(\lambda_e, s_e)\}$ where λ_e runs over *e*-tuples of partitions, s_e is an *e*-tuple of integers summing up to 0.

Remark: Regard λ_e as *e*-quotient, s_e as a label for an *e*-core of λ . Both can be obtained from the Young diagram of λ .

 A_n = category of unipotent representations of G_n .

If $\mathcal{A} = \bigoplus_{n \ge 0} \mathcal{A}_n$, $[\mathcal{A}]$ (complexified Grothendieck group) is isomorphic to \mathcal{F} as a \mathbb{C} -vector space, since $[\mathcal{A}]$ also has a basis indexed by partitions.

[Rep(Γ)] isomorphic to $\mathcal{F}^{(s)}$, subspace of \mathcal{F} with basis (λ_e, s) for fixed s. Both have bases running over e-tuples of partitions.

Heisenberg Lie algebra \mathfrak{h} , generators $\langle B_k | k \in \mathbf{Z} - \{0\}
angle$

with relations
$$[B_k,B_\ell]=krac{1-q^{-2nk}}{1-q^{-2k}}\;\delta_{k,-\ell}$$

DQC

Leclerc-Thibon: Commuting operators V_k $(k \ge 1)$ in \mathfrak{h} acting on \mathcal{F} .

$$V_k(|\lambda>)=\sum_{\mu}(-1)^{-s(\mu/\lambda)}|\mu>$$

where the sum is over all μ such that μ is obtained from λ by adding k e-skew hooks, such that the tail of each skew hook is not upon the head of another skew hook.

s is the leg length of the skew hook.

200

More generally, we have $V_{\rho} \in U(\mathfrak{h})$ where ρ is a composition:

If
$$ho=\{
ho_1,
ho_2,\ldots\}$$
 then $V_
ho=V_{
ho_1}.V_{
ho_2}\ldots$

Then $S_{\mu} = \sum_{\rho} k_{\mu\rho} V_{\rho}$, operator in $U(\mathfrak{h})$, $k_{\mu\rho}$ are inverse Kostka polynomials.

 $U(\mathfrak{h})$ acts on $[\mathcal{A}] \leftrightarrow \mathcal{F}$ by S_{μ} (basis \mathcal{B}_1 of partitions, indexing unipotent characters).

Also, $U(\mathfrak{h})$ acts on $\mathcal{F}^{(s)} \leftrightarrow [\operatorname{Rep}(\Gamma)]$ by S_{μ} , (now on basis \mathcal{B}_2 of *e*-tuples of partitions, indexing $\operatorname{Rep}(\Gamma)$.

Main theorems:

Theorem. S_{μ} , acting on \mathcal{F} , can be identified with Lusztig induction \mathcal{L}_{μ} on $[\mathcal{A}]$.

Theorem (Shan-Vasserot) Action of S_{μ} on $\mathcal{F}^{(s)}$ is identified with ordinary induction in $[\operatorname{Rep}(\Gamma)]$.

200

Theorem. S_{μ} , acting on \mathcal{F} , can be identified with Lusztig induction \mathcal{L}_{μ} on $[\mathcal{A}]$.

Two applications:

(1) Interpretation of BMM bijection

(2) Connection between some Brauer characters and Lusztig induction

200

(1) Interpretation of BMM Bijection:

Consider the map $\lambda \to (\lambda^*, s)$ where λ^* is the *e*-quotient of λ and *s* labels the *e*-core of λ , between the basis \mathcal{B}_1 of all partitions $|\lambda\rangle$ and the basis \mathcal{B}_2 of (λ_e, s_e) where λ_e are ℓ -tuples of partitions. Fix $k, \mu \vdash k$. The action of $S_{\mu} \in U(\mathfrak{h})$ on \mathcal{B}_1 , interpreted as on $[\mathcal{A}]$, corresponds to Lusztig induction on the groups G_n . On the other hand, the action on \mathcal{B}_2 , interpreted as on [Rep Γ], corresponds to ordinary induction on complex reflection groups.

Work done on blocks and decomposition matrices of finite reductive groups: Dipper-James, Geck, Gruber, Hiss, Kessar, Malle ... e.g. modular Harish-Chandra theory.

In Dipper-James theory, have q-Schur algebra S_n .

200

K, \mathcal{O}, k, ℓ -modular system

Dipper-James theory: e is the order of q mod ℓ . Here $q \in k$, characteristic *l*.

The decomposition matrix of S_n is square, has entries the multiplicities of irreducibles in Weyl modules.

There is a square part of the decomposition matrix of G_n , rows indexed by unipotent characters, columns by Brauer characters.

200

K, \mathcal{O}, k, ℓ -modular system

Dipper-James theory: e is the order of $q \mod \ell$. Here $q \in k$, characteristic ℓ .

The decomposition matrix of S_n is square, has entries the multiplicities of irreducibles in Weyl modules.

There is a square part of the decomposition matrix of G_n , rows indexed by unipotent characters, columns by Brauer characters.

These two matrices are the same!

E 990

(2) Back to space $\mathcal{F} \leftrightarrow [\mathcal{A}]$ standard basis χ_{λ} (unipotent characters). Two canonical bases (Leclerc-Thibon, Uglov), analogous to Lusztig's canonical bases.

$$egin{aligned} G^+(\lambda) &= \sum d_{\lambda\mu}\chi_\mu \ G^-(\lambda) &= \sum e_{\lambda\mu}\chi\mu \end{aligned}$$

200

By the work of Varagnolo-Vasserot on

decomposition matrix of S_n ,

for large ℓ we have:

If $\lambda, \mu \vdash n$, $D = (d_{\lambda \mu})$ is the unipotent

part of the decomposition matrix of G_n .

If $E = (e_{\lambda\mu})$, E is the inverse transpose of D.

The columns of D express the unipotent characters of G_n in terms of Brauer characters.

Thus, the rows of E express the Brauer characters of G_n in terms of unipotent characters.

Describe $G^{-}(\lambda) = \sum e_{\lambda\mu} \chi_{\mu}$.

200

Example of the inverse decomposition matrix E for n = 4, e = 2:

(4	1	0	0	0	0)	
31	-1	1	0	0	0	
22	1	-1	1	0	0	
211	-1	0	-1	1	0	
$\begin{pmatrix} 11111 \end{pmatrix}$	0	0	1	$^{-1}$	1)	

$$G^{-}(211) = -\chi_4 - \chi_{22} + \chi_{211},$$

 $G^{-}(22), G^{-}(211), G^{-}(1111)$ are Brauer characters.

Bhama Srinivasan (University of Illinois at Chicago

Banff, March 2014 22 / 29

臣

200

Algorithm exists to compute these decomposition numbers in principle.

We wish to describe some of them by Lusztig induction.

200

물 제 문 제

• • • • • • • •

Theorem. Let $\lambda \vdash n$, $\lambda = \mu + e\alpha$, $\mu \vdash m$, $\alpha \vdash k$, and let μ' be *e*-regular. Then the Brauer character represented by $G^{-}(\lambda)$ is equal to the Lusztig generalized character $R_{L}^{G_{n}}(G^{-}(\mu) \times \chi_{\alpha})$, where n=m+ke, $L = G_{m} \times GL(k, q^{e})$. Proof, Lecture Thisse have proved that $G^{-}(\lambda) = S_{m} G^{-}(\mu)$, so the

Proof. Leclerc-Thibon have proved that $G^-(\lambda) = S_{\alpha}G^-(\mu)$, so the proof follows from $S_{\alpha} = \mathcal{L}_{\alpha}$.

An example of a decomposition matrix D for n = 4, e = 4: $\begin{pmatrix} 4|| & 1 & 0 & 0 & 0 \\ 31|| & 1 & 1 & 0 & 0 \\ 211|| & 0 & 1 & 1 & 0 \\ 1111|| & 0 & 0 & 1 & 1 \end{pmatrix}$

イロト イポト イヨト イヨト 三日

590

An example of the inverse of a decomposition matrix D for n = 6,

e = 2:	(1	0	0	0	0	0	0	0	0	0
	-1	1	0	0	0	0	0	0	0	0
	1	-1	1	0	0	0	0	0	0	0
	-1	0	-1	1	0	0	0	0	0	0
	-1	1	-1	0	1	0	0	0	0	0
	1	$^{-1}$	1	-1	$^{-1}$	1	0	0	0	0
	1	0	1	-1	$^{-1}$	0	1	0	0	0
	0	0	-1	1	1	-1	-1	1	0	0
	0	0	1	-1	0	0	1	-1	1	0
	0	0	0	0	0	0	$^{-1}$	1	-1	1)
Here the rows are indexed as: $6, 51, 42, 41^2, 3^2, 31^3, 2^3, 2^{2}1^2, 21^4, 1^6$										
Source: GAP, MAPLE										

590

In the above matrix:

The rows indexed by 1^6 , 2^21^2 , 3^2 , 21^4 , 41^2 have interpretations in terms of $R_L^{G_n}$, with L e-split Levi of the form $GL(3, q^2)$, $GL(2, q) \times GL(2, q^2)$, $GL(4, q) \times GL(1, q^2)$, as Brauer characters. Row indexed by 3^2 : $L = GL(3, q^2) : R_L^G(\chi_3) = \chi_{3^2} - \chi_{42} + \chi_{51} - \chi_6$ Row indexed by 2^21^2 is $R_L^G(\chi_{21})$ and Row indexed by 1^6 is $R_L^G(\chi_{13})$.

Michel Broué's philosophy

BRAUER=LUSZTIG

Bhama Srinivasan (University of Illinois at Chicago

i

590

문어 귀 문어

References:

M. Broué, G. Malle & J. Michel, Représentations Unipotentes génériques et blocs des groupes réductifs finis, Astérisque 212 (1993).
B.Leclerc, J-Y. Thibon, Canonical bases of q-deformed Fock spaces, Int. math. Res. Notices 9 (1996), 447-456.
P.Shan, E.Vasserot, Heisenberg algebras and rational double affine Hecke algebras, J. Amer. Math. Soc. 25 (2012), 959-1031.
D. Uglov, Canonical bases of higher level q-deformed Fock spaces

and Kazhdan-Lusztig poly- nomials, <u>Progress in Math</u>. **191**, Birkhauser (2000).