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Lie theory in finite groups

G is a connected reductive algebraic group defined over Fq,

F : G! G a Frobenius morphism,

G = GF is a finite reductive group.

Examples: GL(n; q), U(n; q), Sp(2n; q), SO�(2n; q)

G has subgroups maximal tori, Levi subgroups (centralizers of tori)
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Lie theory in finite groups

Let ` be a prime not dividing q.

Suppose L is an F -stable Levi subgroup.

The Deligne-Lusztig linear operator:

RG
L : K0(QlL)! K0(QlG ).

The unipotent characters of G are the irreducible characters

� in RG
T (1) as T runs over F -stable maximal tori of G.

If L is in an F -stable parabolic subgroup P,

RG
L is just Harish-Chandra induction.
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Lie theory in finite groups

Lusztig classification of complex characters is in good shape.

Irr(G ) = [ E(G ; (s)), union of Lusztig series, (s) � G �, a

semisimple conjugacy class.
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Modular representation theory

K a sufficiently large field of characteristic 0

O a complete discrete valuation ring with quotient field K

The ordinary characters or KG -modules are partitioned into blocks

corresponding to the decomposition of OG into indecomposable

two-sided ideals called block algebras.
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Classification of blocks

G is a finite reductive group, e.g. a classical group. ` a prime not

dividing q.

Problem: Describe the `-blocks of G .

A unipotent block is a block which contains unipotent characters.

Describe the unipotent blocks.
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Classification of blocks

Let G = GL(n; q), e the order of q mod `. The unipotent characters

of G are constituents of the permutation representation on the cosets

of the subgroup B of upper triangular matrices. They are indexed by

partitions of n. Say �� corresponds to the partition �.

Theorem (Fong-Srinivasan, 1982) ��, �� are in the same `-block if

and only if �, � have the same e-core.

Proof involves Deligne-Lusztig theory and Brauer theory. These two

theories are compatible!
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Classification of blocks

G = Sp(2n; q); SO(2n + 1; q); SO�(2n; q),

A symbol Λ is a pair (S ;T ) of subsets of N.

Notion of e-hooks, e-cohooks, e-cores of symbols defined. 
0 1 2

1 3

!
,

 
0 1 4

1 3

!
,

 
0 1

1 3 4

!

The second symbol comes from the first by adding a 2-hook.

The third symbol comes form the first by adding 2-cohook.
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Classification of blocks

In G = CSp(2n; q); SO(2n + 1; q);CSO�(2n; q), unipotent

characters are parameterized by symbols.

q and ` odd, e the order of q mod `.

Unipotent blocks are again classified by e-cores of symbols.

(Fong-Srinivasan,1989)

THEOREM  Λ1 ,  Λ2 are in the same `-block if and only if the

symbols Λ1, Λ2 have the same e-core.

Bhama Srinivasan (University of Illinois at Chicago) Blocks June 2009 9 / 40



Classification of blocks

e-Harish-Chandra theory for unipotent characters: The Lusztig series

E(G ; 1) is partitioned into families.

The characters in a family are constituents of RG
L ( ) where L is an

“e-split Levi subgroup”,  a unipotent “e-cuspidal” character of L.

Then (L;  ) is called an e-cuspidal pair.

e = 1 gives the usual Harish-Chandra theory.
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Classification of blocks

THEOREM (Cabanes-Enguehard) Let B be a unipotent block of G ,

` odd. Then the unipotent characters in B are precisely the

constituents of RG
L ( ) where the pair (L;  ) is e-cuspidal.

Thus we have a fit of Brauer theory and Lusztig theory. The

subgroup NG (L) here plays the role of a ”local subgroup”.

EXAMPLE. GL(n,q): L �= T1 �T2 � : : :Tr � GL(m; q), where the Ti

are tori of order qe � 1 and  = 1� ��, � an e-core.
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Classification of blocks

Arbitrary `-block B of G determines a conjugacy class (s) in a dual

group G � of G , where s 2 G � is an `0-semi simple element. Then one

hopes for a Jordan decomposition of blocks, i.e. a unipotent block of

CG�(s) sharing some properties with B .
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Classification of blocks

Some modern problems of modular representation

theory:

G is a finite reductive group, H some related group, e.g. another

finite reductive group, NG (L), L Levi in G , or CG�(s) for some s.

Block B of G , block b of H

(Broué) Establish a perfect isometry between B and b (over K )

(BADC) (Broué’s abelian defect group conjecture) derived

equivalence of blocks between OB and Ob

Morita equivalence between OB and Ob
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Classification of blocks

Bonnafé-Rouquier: If B corresponds to s 2 G � where CG�(s) is

contained in a Levi subgroup, there is a Morita equivalence between

B and a unipotent block of b.
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Classification of blocks

Block B of G , block b of H :

A perfect isometry is a bijection between K0(B) and K0(b) preserving

certain invariants of B and b.

Leads to:

B and b have the same number of ordinary and modular

irreducible characters

Cartan matrices of the blocks B and b define the same integral

quadratic form.
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Classification of blocks

Some results on perfect isometries, when the defect group of the

blocks are abelian:

Broué, Malle, Michel: perfect isometries between unipotent

blocks of finite reductive groups and normalizers of Levi

subgroups (abelian defect groups)

Rouquier: Between two symmetric groups (”equal weight”)

Enguehard: Between two general linear groups (”equal weight”)

Stronger results due to Chuang-Rouquier: BADC for general linear

groups
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Classification of blocks

Question: Perfect isometries between groups of different Lie types? A

possibility?

Example: GL(4; q) and Sp(4; q), ` divides q + 1. There is one block

correspondence between principal blocks. But GL(4; q) has 5

unipotent characters in one block, Sp(4; q) has 6 unipotent

characters, 5 in one block and 1 in one block.
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Classification of blocks

Inspiration

p-adic groups, James Arthur: ”We shall describe a classification of

automorphic representations of classical groups in terms of those of

general linear groups (endoscopic group)”

Waldspurger’s papers
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Quadratic Unipotent Characters

Enlarge the set of unipotent characters.

G is a finite reductive group.

Irr(G ) = [ E(G ; (s)), union of Lusztig series, (s) � G �, a

semisimple conjugacy class.

(Waldspurger) If s2 = 1, characters in E(G ; (s)) are called

quadratic unipotent (special case: unipotent, s = 1).

Bhama Srinivasan (University of Illinois at Chicago) Blocks June 2009 19 / 40



Quadratic Unipotent Characters

Gn = GL(n; q) or U(n; q), q odd.

Quadratic unipotent characters are parameterized by pairs of

partitions (�1; �2) of ki ; i = 1; 2 resp., with k1 + k2 = n.

Hn = Sp(2n; q). Unipotent characters parameterized by (equivalence

classes of) symbols.

Quadratic unipotent characters parameterized by (equivalence classes

of) pairs of symbols (Λ1;Λ2) where

Λ1: unordered symbol of rank k1

Λ2: ordered symbol of rank k2, k1 + k2 = n.

CG�(s) can be disconnected, e.g (SO(2k1 + 1)� SO�(2k2))o Z2
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Quadratic Unipotent Characters

Notation: Irr(Gn)qu, Irr(Hn)qu for quadratic unipotent characters,

Wn is the Weyl group of type Bn.

Waldspurger’s Parametrization of Irr(Gn)qu:

(�1; �2) ! f(m1;m2; �1; �2)g

m1;m2 2 N; �i 2 Irr(WNi ); i = 1; 2

m1(m1 + 1)=2 + m2(m2 + 1)=2 + 2N1 + 2N2 = n

Here mi , �i come from the 2-core and the 2-quotient of �i .
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Quadratic Unipotent Characters

Example:

�(21;1) is 2-cuspidal (no 2-core), in Irr(GL(4))qu. In GL(6), �(41;1) is

obtained by Lusztig induction from L = GL(4)� Tq2�1, with

�1 = (1;�). Then (m1;m2; �1; �2) = (2; 1; (1;�);�).0
@� � � �

� + +

1
A!

0
@� � + +

�

1
A!

0
@� �
�

1
A
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Quadratic Unipotent Characters

Waldspurger’s Parametrization of Irr(Hn)qu:

Irr(Hn)qu  ! f(h1; h2; �1; �2)g

h1 2 N; h2 2 Z ; �i 2 Irr(WNi ); i = 1; 2

h1(h1 + 1) + h2
2 + N1 + N2 = n
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Quadratic Unipotent Characters

Waldspurger’s bijection:

(m1;m2) ! (h1; h2), where

m1 = sup(h1 + h2; h1 � h2 � 1);m2 = sup(h1 � h2; h2 � h1 � 1)

.

f2� cuspidals 2 Irr(Gn)qug  ! f1� cuspidals 2 Irr(Hn)qug
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Quadratic Unipotent Characters

Extend bijection to

fIrr(Gn)qug  ! fIrr(Hm)qug

by

f(m1;m2; �1; �2)g  ! f(h1; h2; �1; �2)g

m1(m1 + 1)=2 + m2(m2 + 1)=2 + 2N1 + 2N2 = n

,

h1(h1 + 1) + h2
2 + N1 + N2 = m

.
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Quadratic Unipotent Characters

Example: jIrr(Sp(4; q))quj = 23, bijection of 14 with GL(4; q), 8 with

GL(3; q), 1 with GL(2; q).

�10 2 Irr(Sp(4; q)) ! �(1;1) 2 Irr(GL(2; q))qu

Note �10 unipotent, �(1;1) 2 E(G ; (s)) with s of order 2,

m1 = 1;m2 = 1; h1 = 1; h2 = 0.
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Quadratic Unipotent Characters

Example: jIrr(GL(4; q))quj = 20, bijection of 14 with Sp(4; q), 4 with

Sp(6; q), 2 with Sp(8; q).

Two with Sp(8; q) are �(21;1), �(1;21), 2-cuspidal, also correspond to

cuspidal unipotent characters of O�(8; q). Here

m1 = 2;m2 = 1; h1 = 0; h2 = �2:
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Quadratic Unipotent Characters

K a sufficiently large field of characteristic 0.

Ln the category of quadratic unipotent representations of Gn over K ,

Mn the same for Hn.

THEOREM With the usual inner product, there is an

isometry between �n>0K0(Ln) and �n>0K0(Mn).

Also: Both isomorphic to

Z [N � N]��n;m>0K0(Hn �mod)� K0(Hm �mod), Hn Hecke

algebra of type Bn.
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Quadratic Unipotent Blocks

Recent work: J.Algebra 184 (1996) and 319 (2008).

Theorem on unipotent blocks of G = Sp(2n; q), SO(2n + 1; q),

SO�(2n; q) generalized to “quadratic unipotent” blocks.

EXAMPLE. Hn = Sp(2n; q): quadratic unipotent characters in a

block are constituents of RHn
L ( );

L �= T1 � T2 � : : :TM1 � T1 � T2 � : : :TM2 � Sp(2m; q), where the

Ti are tori of order qf � 1 and  = 1� E � �Λ1;Λ2 , Λ1 and Λ2 are

f -cores.

Quadratic unipotent blocks classified by e-cores of pairs of symbols

and weights.
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Quadratic Unipotent Blocks

Fix an odd prime `, e the order of q mod `, e = 2f .

Let f be odd. COMPARE:

Gn = U(n; q) and Hn = Sp(2n; q), q > n, ` divides qf � 1

Gn = GL(n; q), and Hn = Sp(2n; q), q > n,

` divides qf + 1.

Also: e = 2f where f is even, i.e. e � 0 (mod 4) and ` divides

qf + 1. Exclude e � 2 (mod 4) .
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Quadratic Unipotent Blocks

THEOREM Let q, ` be odd, and q > n. There are `-block

correspondences between blocks B of Gn and blocks b of Hn as

follows:

(i)` divides qf � 1, f odd, B a quadratic-unipotent `-block of U(n; q)

and b a quadratic-unipotent `-block of Sp(2m; q),some m

(ii)` divides qf + 1, f odd, B a quadratic-unipotent `-block of

GL(n; q) and b a quadratic-unipotent `-block of Sp(2m; q), some m

There is a natural bijection between quadratic-unipotent characters in

B and b.

When the defect groups are abelian, the defect groups are isomorphic

and there is a perfect isometry between B and b
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Quadratic Unipotent Blocks

Let Bl(Gn)qu (resp. Bl(Hn)qu be the set of quadratic unipotent

blocks of Gn (resp. Hn), ` divides qf � 1 or qf + 1 as above.

There is a bijection

a
n>0

Bl(Gn)qu $
a
n>0

Bl(Hn)qu;

such that if B ! b, there is a natural bijection between

quadratic-unipotent characters in B and b.
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Quadratic Unipotent Blocks

IDEA

Use the following correspondences:

B  ! 2f � core(�1; �2) ! f(m1;m2; �1; �2)g  !

f(h1; h2; �1; �2)g  ! f � core(Λ1;Λ2) ! b

m1(m1 + 1)=2 + m2(m2 + 1)=2 + 2N1 + 2N2 = n,

h1(h1 + 1) + h2
2 + N1 + N2 = m.
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Quadratic Unipotent Blocks

IDEA

Perfect Isometries “across types”:

Use the paper of [BMM] to get an isotypy from B to a local

subgroup of Gn of the form NGn(L; �), then to a local subgroup of

Hn, then to b.
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Quadratic Unipotent Blocks

Endoscopic groups

Enguehard has defined for a finite reductive group G , s 2 G�, a

group G (s) (can be called an endoscopy group).

Example: For Hn = Sp(2n; q), s with s2 = 1,

Hn(s) = Sp(2m; q)� O(2n � 2m; q).

We also have correspondences between unipotent blocks of suitable

Gn(s) and Hn(s).
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Quadratic Unipotent Blocks

Here Bl(Gn)u denotes the set of unipotent blocks of Gn.

There is a bijection

a
n1;n2>0

Bl(Gn1 � Gn2)u $
a

n1;n2>0

Bl(Sp2n1 � O2n2)u;

such that if B ! b, there is a natural bijection between

quadratic-unipotent characters in B and b.
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Quadratic Unipotent Blocks

SUMMARY

�n>0K0(GLn �mod)qu
�= �n>0K0(Sp2n �mod)qu.

�n1;n2>0K0((GLn1 � GLn2)�mod)u
�=

�n1;n2>0K0((Sp2n1 � O2n2)�mod)u.
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Quadratic Unipotent Blocks

SUMMARY

For suitable `:
`

n>0 Bl(GLn)qu $
`

n>0 Bl(Sp2n)qu`
n1;n2>0 Bl(Gn1 � Gn2)u $

`
n1;n2>0 Bl(Sp2n1 � O2n2)u
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Quadratic Unipotent Blocks

What more can we say about this correspondence between blocks of

general linear/unitary groups and blocks of symplectic groups?

Are corresponding blocks derived equivalent? Morita equivalent?

Has the symplectic group reached equal status with the general linear

group, her ”all-embracing majesty”?
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Quadratic Unipotent Blocks
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