Math 481 Sample Exam Questions

1. Consider the function $f(x)=\pi-x$ on $0<x<\pi$.
(a) Sketch $f(x)$.
(b) Find its Fourier sine series and sketch it on the interval $-2 \pi<x<2 \pi$. Show all points of convergence.
(c) Find its Fourier cosine series and sketch it on the interval $-2 \pi<x<$ 2π. Show all points of convergence.
(d) Which Fourier series is more accurate over the entire interval?
2. Solve the heat conduction problem

$$
\begin{gathered}
u_{t}=u_{x x}, \quad 0<x<L, t>0 \\
u_{x}(0, t)=0=u_{x}(L, t) \\
u(x, 0)=5-2 \cos \frac{3 \pi x}{L}
\end{gathered}
$$

3. Determine the non-negative eigenvalues, if any, and their corresponding eigenfunctions for the BVP:

$$
\begin{gathered}
\phi^{\prime \prime}+\lambda \phi=0 \\
\phi(0)=0, \quad \phi^{\prime}(\pi)=0
\end{gathered}
$$

4. Determine all the negative eigenvalues of:

$$
\begin{gathered}
\phi^{\prime \prime}+5 \phi=-\lambda \phi \\
\phi(0)=0, \quad \phi(\pi)=0
\end{gathered}
$$

5. Construct the solution of the wave equation

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x}, \quad 0<x<\pi, t>0 \\
u(0, t)=0=u(\pi, t) \\
u(x, 0)=\sin x+4 \sin 3 x, \quad u_{t}(x, 0)=0
\end{gathered}
$$

Sketch the standing waves that are present and discuss the presence of waves moving to the right and left.
6. Use the method of eigenfunction expansion to solve Laplace's equation: $\nabla^{2} u=$ $u_{x x}+u_{y y}=0$ in the unit square subject to the boundary conditions:

$$
u(0, y)=0, \quad u(1, y)=f(y), \quad u(x, 0)=0, \quad u(x, 1)=0
$$

7. Consider Laplace's equation $\nabla^{2} u=u_{x x}+u_{y y}=0$ inside the circular annulus $\left(1<x^{2}+y^{2}<4\right)$ subject to the boundary conditions

$$
u=0 \text { on } x^{2}+y^{2}=1, \quad u=G(\theta) \text { on } x^{2}+y^{2}=4 .
$$

(a) Formulate the problem in polar coordinates and state all auxiliary conditions.
(b) Use separation of variables to construct the solution.
8. Construct the Fourier series on $-L \leq x \leq L$ of

$$
f(x)=\left\{\begin{array}{cc}
1 & -L<x<0 \\
2 & 0<x<L
\end{array}\right.
$$

Sketch the Fourier series.

