Solution

1. [6pt] Suppose the probability of producing a defective item is $\mathbf{0 . 0 5}$.
a). What is the probability that exactly two is defective out of 10 items that are selected independently?

Let X be the number of defective ones in the 10 items, then $X \sim B(10,0.05)$
$\{\mathrm{X}=2\}=\{$ exactly two is defective out of 10 items $\}$
Use the Binomial Table : $P(X=2)=F(2)-F(1)=.9885-.9139=.0746$
where $\mathrm{F}(x)$ is the cumulative distribution function of the random variable X .
Or directly $P(X=2)=\binom{10}{2} 0.05^{2}(1-0.05)^{8}=.0746$
b). How many items do we have to produce so that the probability of producing at least one defective item is greater than $\mathbf{9 0 \%}$?

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X} \geq 1) \geq .90, \quad \text { then } 1-\mathrm{P}(\mathrm{X}=0) \geq .90 \\
& \mathrm{P}(\mathrm{X}=0)=0.95^{n}, \text { then } \quad 1-0.95^{n} \geq 0.90 \quad \text { i.e. } 0.95^{n} \leq 0.10 \\
& n \geq \log (0.10) / \log (0.95), \text { so } \mathrm{n} \geqslant 44.89 \nearrow \mathrm{n}=45
\end{aligned}
$$

2. [4pt] The daily number of plant shutdown follows a Poisson distribution with mean 2.
a) What is the probability that there is at least one shutdown in a day?

Let Y be the daily number of plant shutdown, then $Y \sim P(2)$
$\{\mathrm{Y} \geq 1\}=\{$ at least one shutdown in a day $\}$
Use the Poisson Table : $P(Y \geq 1)=1-F(0)=1-.135=.865$
Or $P(Y \geq 1)=1-P(X=0)=1-\frac{2^{0} \cdot e^{-2}}{0!}=1-e^{-2}=1-0.1353=0.8647$
b) Assume that the company losses $\mathbf{\$ 1 0 0 0 0}$ on each shutdown. Calculate the expected daily loss.

Let Z be the daily loss of the company, $\mathrm{Z}=10000^{*} \mathrm{Y}$
Since $Y \sim P(2)$, then $\mathrm{E}(\mathrm{Y})=2$.
Hence the expected daily loss $\mathrm{E}(\mathrm{Z})=10000 * \mathrm{E}(\mathrm{Y})=20000$.

