Math 110 Review for Exam 1

1. The picture below displays the graph of a function f.

a. What is the domain and range of f ? Use interval notation.
b. On which intervals of x is f increasing? Decreasing?
c. What are the local maximum and minimum values of f, and where do they occur?
2. The graph of a function g is displayed below.

Write an explicit rule for $g(x)$, and test it with several values of x.
3. Let $g(t)=\left\{\begin{array}{ll}3-t^{2} & : t<-1 \\ 2 & : t \geq-1\end{array}\right.$, and $h(t)=\left\{\begin{array}{ll}3 & : t \leq 0 \\ t & : t>0\end{array}\right.$.
a. Sketch the graphs of h and g.
b. For what value(s) of t is $h(t)=g(t)$? For what intervals of t is $h(t)>g(t)$?
4. You are driving on the interstate at a constant speed. You notice you start at mile marker 210. After 1 and a half hours, you notice you pass mile marker 315. Since you are driving at a constant speed (hurray for cruise control), there is a linear relationship between the position you are on the road M (think mile markers) and the time t you have been driving on the interstate since passing that first mile marker you noticed.
a. What is the slope between these points, and what is its meaning in this context?
b. Find a linear equation that models the position M (in miles) you are on the road in terms of the time t you have been driving.
c. How long will you have been driving when you reach mile marker 420 ?
5. The graph of a function f is displayed below.

a. Using transformations, write down the explicit rule $f(x)$ of the function.
b. Restrict the domain of f so that it has an inverse f^{-1}, and find a rule for $f^{-1}(x)$.
c. Use composition to check your answer in from part (b); verify that $f \circ f^{-1}(x)=x$.
6. Let $f(x)=\frac{1}{x}, g(x)=\frac{1}{x^{2}}, h(x)=x-3$, and $k(x)=\sqrt[3]{7-4 x}$.
a. Find $f(f(x))$ and its domain.
b. Find $f(g(x))$ and its domain.
c. Find $g(h(x))$ and its domain.
d. Find $k^{-1}(x)$.
7. Observe the following graph of a function f.

Is this function one-to-one? If so, sketch the graph of its inverse on the same coordinate plane.
The following problems are from written homework 4.
8. Given the quadratic function $f(x)=-x^{2}+8 x-7$, answer the following.
a. Find the x and y-intercepts for f. Write your answers in point form.
b. Find the vertex of f, and write your answer in point form.
c. Does f have a minimum or maximum, and what is it?
d. Use your answers above to sketch a graph of f.
e. What is the domain and range of f ?
f. On what interval is f increasing, and on what interval is f decreasing?
g. On what interval is $f(x) \geq 0$?
9. The number of apples produced by each tree in an apple orchard depends on how densely the trees are planted. If n trees are planted on an acre of land, then each tree produces $900-9 n$ apples. So the number of apples produced per acre is

$$
A(n)=n(900-9 n)
$$

How many trees should be planted per acre to obtain the maximum yield of apples?
10. Given the function $f(x)=2+\sqrt{x+3}$, answer the following.
a. What is the domain and range of f ? Write your answers in interval form.
b. Sketch a graph of f.

c. Find a formula for $f^{-1}(x)$. Note: Remember, the domain of $f^{-1}(x)$ will match the range of $f(x)$.
d. Sketch a graph of $f^{-1}(x)$. Just sketch this above on part b's coordinate plane.
11. Sketch a graph of the following functions, using transformations of the given functions $f(x)=x^{2}, g(x)=\sqrt{x}$, and $h(x)=|x|$, respectively. Please state what the transformations are and then graph them.
$F(x)=-2(x-3)^{2} \quad G(x)=\sqrt{-\frac{1}{2} x}+2 \quad H(x)=3-|x+1|$
12. The discussion sheets from Thursday February 2nd (week 4) and from Tuesday February 7th (week 5) are excellent review as well, so be sure to look over those.

