Math 110 Review for Exam 2

1. Use the graph of the sixth degree polynomial $p(x)$ below to answer the following.

a. List each zero of f in point form, and state its likely multiplicity (keep in mind this is a 6 th degree polynomial).
b. State the y-intercept in point form.
c. Write a possible formula for $p(x)$. You can leave this in factored form. Remember to use your y-intercept to find a, the leading coefficient.
2. Given the polynomials below, answer the following:
$P(x)=2 x^{3}+3 x^{2}-3 x-2 \quad P(x)=x^{4}+2 x^{3}-7 x^{2}-8 x+12$
a. State all possible rational zeros.
b. For each, use synthetic division to show $x=1$ is a zero of the function.
c. Write the function as $P(x)=(x-1) Q(x)$ and finish factoring the function into linear factors.
d. Graph each function.
e. State the intervals on which $P(x) \leq 0$
3. Factor the following polynomials into linear factors (real and complex) and find all zeros (real and complex).
$P(x)=x^{4}+8 x^{2}-9 \quad p(x)=x^{4}-64$
4. Find a formula for a third degree polynomial that has zeros 2 and $3 i$, and has a y-intercept of -9 .

Notice problems \#5-7 are from HW 7.
5. Consider the function $g(x)=-2^{x-2}+3$, and answer the following.
a. Refer to the function $f(x)=2^{x}$, and state what transformations of f is the function $g(x)=-2^{x-2}+3$.
b. Graph f and g below.
c. State the Domain, Range, and Asymptote of g.
d. Find the average rate of change of g on the interval $[1,3]$.
6. The function below represents a population of fish in a pond t years after a group of fish were initially placed in the pond (the pond did not have any fish before this group was introduced). Answer the following.
$P(t)=\frac{1200}{1+11 e^{-0.2 t}}$
a. How many fish were in group initially placed in the pond, $t=0$?
b. What value does the population approach as $t \rightarrow \infty$?
7. Given $P(x)=x^{4}-x^{3}-11 x^{2}+9 x+18$, answer the following.
a. List all possible rational zeros of P.
b. Using synthetic division, show $x=-1$ is a zero of P.
c. Using your work from part b , fully factor P into real linear factors.
d. Sketch a graph of P below.
e. Find the intervals for which $x^{4}-x^{3}-11 x^{2}+9 x+18 \leq 0$
8. For the following rational functions, answer the following.
$R(x)=\frac{2}{x^{2}+2 x-3} \quad R(x)=\frac{2 x^{2}-8}{x^{2}-4 x} \quad R(x)=\frac{x^{2}+3 x}{x-2} \quad R(x)=\frac{x^{2}-x-6}{x^{2}-9}$
a. Find the zeros of the function.
b. Find the y-intercept.
c. Find all asymptotes (Vertical, Horizontal, oblique (slant), if any).
d. Sketch a graph of the function.
e. State the intervals in which $R(x) \geq 0$.
9. Given the following graphs of rational functions, answer the following.
a. Find the zeros of the function.
b. Find the y-intercept.
c. Find all asymptotes (Vertical, Horizontal, oblique (slant), if any).
d. What is the domain and range of $R(x)$?
e. Use your answers above to find a possible formula for $R(x)$.

10. Graph the following exponential functions state the domain, range, and asymptote.

$$
F(x)=2^{x}-3 \quad g(x)=4+\left(\frac{1}{2}\right)^{x} \quad f(x)=2^{x-4}+1 \quad h(x)=6-3^{x}
$$

11. Graph $f(x)=e^{x}$, and then use this to sketch a graph of the following.

$$
g(x)=e^{-x}-3 \quad h(x)=1-e^{x+1}
$$

12. A sky diver jumps from a reasonable height above ground. The downward velocity of the sky diver at time t is given by $v(t)=180\left(1-e^{-0.2 t}\right)$, where t is measured in seconds and $v(t)$ is measured in feet per second, $\frac{f t}{s e c}$.
a. Find the initial velocity of the sky diver.
b. Find the velocity after 10 seconds. Leave your answer exact.
c. The maximum velocity of a falling object with wind resistance is called its terminal velocity. Find the terminal velocity of the sky diver. To do so, find what the velocity approaches as $t \rightarrow \infty$.
13. If $\$ 10,000$ is invested at an interest rate of 5% per year, find the amount of the investment after 10 years for the following compounding methods. Leave your answer exact.
a. Annually
b. Monthly
c. Continuously
