Math 121 Precalculus

Final Exam

NAME:
TA:
\qquad

December 9, 1999
Give complete explanations, not just answers, for full credit. Sketch any calculator graph you use including the axes with a scale. Give exact answers whenever possible; otherwise give answers accurate to 2 decimal places

1. Graph the function $f(x)=\frac{2 x+3}{5 x-4}$, but first find the following
(a) The zero(s) of f.
(b) The y-intercept of f.
(c) The vertical asymptotes of f.
(d) The end behavior asymptote of f.

Show all the properties (a) through (d) on your graph.
2.
a) A boat runs in a straight line for 4 km and then makes a 90° turn and goes for another 6 km . How far from its starting point is the boat?
b) A boat runs in a straight line for 5 km and then makes a 45° turn and goes for another 6 km . How far from its starting point is the boat?
3. Find all solutions, real or complex, to the equation $5 x^{3}+3 x^{2}-x+1=0$. Give exact answers.
4. Find all real solutions to the equation $\ln (x)+\ln (x+2)=3 \ln 2$.
5. How long will it take for an investment to triple in value when interest is earned at an annual rate of 6.25% compunded monthly?
6. Find all solutions to the equation $\sin (x)=\sin (2 x)$ in $[0,2 \pi)$.
7. The formula $S(t)=P\left(1+\frac{r}{12}\right)^{12 t}$ is used to compute the value of an investment with interest compounded monthly. If the annual interest rate is $r=6.25 \%$, answer the following questions:
(a) If $\$ 15,000$ is invested originally, what is the value of the investment after five years?
(b) How long will it take for an investment to triple in value?
8. Find a possible trig formula for the function whose graph is:

9. Given two vectors, $\mathbf{v}=<2,3>$ and $\mathbf{u}=<5,4>$,
(a) Find $\mathbf{v}-2 \mathbf{u}$.
(b) Find $\|\mathbf{u}\|$.
(c) Find the direction angle of \mathbf{u}.
(d) Find the component form of the unit vector in the direction \mathbf{u}.
10. A woman on the top of a 510 ft high building spots a small plane at an angle of elevation of 61°. A man on the ground level entrance to the building sees the plane and notes its angle of elevation is 67°.
a) How far is the woman from the plane?
b) How far is the man from the plane?
c) How high is the plane?

