MATH 121 Sample Final Exam - Fall, 2006

Directions

- Answer all ten questions.
- Show your work neatly.
- You are **not allowed** to use any notes or index cards.
- Approximations will not be accepted, where *exact* answers are required.
 - Example: 1.41421... will not be accepted in place of the *exact* value $\sqrt{2}$.
- Cell phones or any other communication devices must be turned off during the exam.

You may need the following formulas:

- 1. $\cos(x+y) = \cos x \cos y \sin x \sin y$
- 2. $\sin(x+y) = \sin x \cos y + \cos x \sin y$
- 3. $a^2 = b^2 + c^2 2bc \cos A$
- 4. $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

Grading

#	points	score
1	20	
2	20	
3	20	
4	20	
5	20	
6	20	
7	20	
8	20	
9	20	
10	20	
Total	200	

1. Determine the **exact** solutions (real and complex) of the equation:

$$x^5 - x^4 - x^3 - x^2 - 2x = 0.$$

- 2. Use logarithms to find the **exact** solution to $3^x = 4^{2x-1}$.
- 3. (a) Prove that $\frac{1}{\csc x \sin x} = \sec x \tan x.$
 - (b) Use identities to show that $\cos(x \pi) = -\cos x$.

(c) Find the **exact** value of
$$\cos \frac{i\pi}{12}$$
.

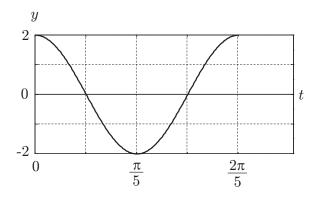
- 4. Let a = 5 cm, b = 8 cm, and c = 9 cm be the sides of triangle ABC. Determine the angles A, B, and C of the triangle. (Write your answers in degrees and accurate to two decimal places.)
- 5. Consider the function $f(x) = \frac{3x-2}{x+1}$.
 - (a) Find the **inverse** of f(x).
 - (b) Find all asymptotes (vertical and horizontal) of f(x).
 - (c) Find the domain of f(x).

6. Let
$$\cos x = \frac{3}{4}$$
 and $\frac{3\pi}{2} < x < 2\pi$. Find the **exact** values of

- (a) $\sin x$,
- (b) $\sin 2x$,
- (c) $\cot(-x)$.
- 7. (a) Find the amplitude, period, and phase shift of the function

$$g(t) = -3\cos\left(\frac{2\pi}{9}t - \sqrt{2}\right).$$

(b) Find a possible formula of the form $A\sin(bt+c)$ or $A\cos(bt+c)$ for the function whose graph is shown below:



- 8. Consider the function $f(x) = 2x^2 + x + 1$.
 - (a) Determine the equation of the function g(x) obtained by performing the following transformations on f(x):
 - expand by a factor of two,
 - shift one unit to the right,
 - shift 3 units upward.
 - (b) Find the interval(s) for which f(x) is increasing.
 - (c) Find the interval(s) for which f(x) is decreasing.

9. Let z = 2 + i.

- (a) Plot z in the complex plane.
- (b) Compute the modulus (absolute value) of z.
- (c) Write z in the polar form: $r(\cos \theta + i \sin \theta)$ where $0 < \theta < 2\pi$. (Write θ in radians and accurate to 3 decimal places.)
- (d) Compute z^8 and write your answer in the form a + bi.
- 10. Let $\mathbf{u} = \langle -1, 2 \rangle$ and $\mathbf{v} = \langle 0, 3 \rangle$.
 - (a) Compute $\mathbf{v} 2\mathbf{u}$.
 - (b) Find the magnitudes (lengths) of \mathbf{u} and \mathbf{v} .
 - (c) Find a unit vector in the direction of **u**.
 - (d) Determine the direction angle of \mathbf{v} .
- 11. The mass M(t) of a radioactive element at time t (measured in years) is given by

$$M(t) = c \left(\frac{1}{2}\right)^{t/h}$$

where c is the mass at t = 0 and h is the half-life.

- (a) If c = 250 milligrams and it is known that M(1000) = 100 milligrams, determine the half-life h. (Write your answer accurate to two decimal places.)
- (b) Using the result from (a), determine the value of t when there is 1 milligram left. (Write your answer accurate to two decimal places.)