- 1. On the same coordinate plane, plot the points given in polar coordinates: $P(2, \frac{\pi}{2})$, $Q(2, -\frac{\pi}{3})$, $R(-2, \frac{5\pi}{4})$. Find the rectangular coordinates for P, Q and R.
- 2. Consider point $P(3, \frac{5\pi}{6})$ in polar coordinates. Plot the point. Find other polar coordinates (r, θ) for P so that

a)
$$r > 0, -2\pi \le \theta < 0$$

b)
$$r < 0$$
, $0 \le \theta < 2\pi$

- 3. Plot the points given in rectangular coordinates: P(-4, -4), Q(-3, 0), R(2, 3). Find polar coordinates for P, Q and R.
- Transform the polar equations below to an equation in rectangular coordinates.

$$r\cos\theta = 4$$

$$r = 3$$

$$\theta = \frac{\pi}{3}$$

$$r = \frac{1}{\sin\theta + \cos\theta}$$

- If $z_1 = -1 + i$ and $z_2 = 1 + \sqrt{3}i$, answer the following. a. Find the polar form of each.

 - b. Find $z_1 \cdot z_2$ and $\frac{z_1}{z_2}$
- 6. Suppose $\mathbf{v} = <2, 3 > \text{ and } \mathbf{w} = <3, -4 >$.
 - a) -2v + 3w =

$$||\mathbf{w}|| =$$

- c) The unit vector in the direction of \mathbf{v} : $\mathbf{u} =$
- d) Suppose that P(-1,1) is the initial point of \mathbf{v} , then the terminal point Q of \mathbf{v} is:
- e) Suppose that S(-2,0) is the terminal point of \mathbf{w} , then the initial point R of \mathbf{w} is:
- f) On the same coordinate plane draw \mathbf{v} , \mathbf{w} , $\mathbf{v} + \mathbf{w}$, $3\mathbf{v}$ and $-\mathbf{w}$ as position vectors.
- 7. Suppose $\mathbf{v} = 3\mathbf{i} 4\mathbf{j}$ and $\mathbf{w} = \mathbf{i} + 7\mathbf{j}$.
 - a) Find $||\mathbf{v}||$ and $||\mathbf{w}||$
 - b) Find v·w
 - c) Find the angle between v and w.
 - d) Find the projection \mathbf{v}_1 of \mathbf{v} onto \mathbf{w} ; find $\mathbf{v}_2 = \mathbf{v} \mathbf{v}_1$
- Write F_1 and F_2 pictured below in the form ai + bj, and then find the resultant force, $F_1 + F_2$.

