1. $f(x)$ is moved right 2 , flipped over the x -axis, and stretched 3 in the y -direction (multiply y values by 3).
$g(x)$ is moved left 5 spaces and down 7.
$h(x)$ is flipped over the y-axis and moved up 4 spaces.
2. y -intercept: $(0,0)$; x -intercepts: $(0,0),(1,0)$; Vertical Asymptotes: $x=3, x=-2$; horizontal asymptotes: $y=\frac{1}{2}$; positive: $(-\infty,-2) \cup(0,1) \cup(3, \infty)$; negative: $(-2,0) \cup(1,3)$

y-intercept: $(0,0)$; x-intercepts: $(0,0),(4,0),(-5,0)$; no asymptotes; positive: $(-5,0) \cup(4, \infty)$; negative: $(-\infty,-5) \cup(0,4)$ Sorry, the graph did not turn out well for this one.
3. This factors to $x(x+3)(x-1)>0$, so the critical points are $x=0,-3,1$. If you place these on a number line, you can test values on the intervals between these points; you are looking for which intervals make the inequality true. These are $(-3,0) \cup(1, \infty)$. Second one: $\frac{(x-3)(x+2)}{x-1} \leq 0$ critical points: $x=-2,1,3$ solution $(-\infty,-2) \cup$ $(1,3)$. Third one: Subtract the fraction on the right side from both sides and then get a common denominator between the two fractions. $\frac{1}{x-2}-\frac{2}{3 x-9}=\frac{3 x-9-2 x+4}{3(x-3)(x-2)}=\frac{x-5}{3(x-3)(x-2)}<0$ critical points $x=2,3,5$ solution $(-\infty, 2) \cup(3,5)$.
4. Domain: all reals $f^{-1}(x)=\frac{1}{2}(x+3)^{2}+\frac{7}{2}$

Domain: $x \neq 6 \quad g^{-1}(x)=\frac{6 x+4}{x-3}$
Domain: All Reals $\quad k^{-1}(x)=-\frac{1}{3} \ln \left(\frac{x-2}{4}\right)$
Domain: $x>\frac{8}{3} \quad j^{-1}(x)=\frac{1}{3}\left(10^{x}+8\right)$
5. First one: take \ln of both sides, then move the exponents in front as a multiplication (rules of logs) to get: $(2 x-5) \ln 3=(x+4) \ln 7$, then distribute $\ln 3$ on the left side and $\ln 7$ on the right side. Get everything with an x on one side and everything els on the other, factor out the x , and divide to get $x=\frac{5 \ln 3+4 \ln 7}{2 \ln 3-\ln 7}$;
Second one: combine into one \log to get $\log _{3}\left(\frac{x-6}{x+2}\right)=2$. Now use the base of the \log to rewrite this as an exponential equation $\frac{x-6}{x+2}=3^{2}=9$. When you solve for x , you get $\mathrm{x}=-3$, so this has no solution since $x=-3$ is not in the domain of the function;
Third one: Solve for $\cos x$, which gives $\cos x= \pm \sqrt{\frac{1}{2}}= \pm \frac{\sqrt{2}}{2}$, so $x=\frac{\pi}{4}+k \pi, \frac{3 \pi}{4}+k \pi$;

Fourth one: sine is $\frac{\sqrt{3}}{2}$ at $\frac{\pi}{3}, \frac{2 \pi}{3}$, so this gives $3 x+\frac{\pi}{6}=\frac{\pi}{3}+2 k \pi$ and $3 x+\frac{\pi}{6}=\frac{2 \pi}{3}+2 k \pi$ if you solve for x in these equations, you get $x=\frac{\pi}{18}+\frac{2 k \pi}{3}$ and $\frac{\pi}{6}+\frac{2 k \pi}{3}$
6. $g(x)$: amplitude: 2 , period: 2 , midline: $y=-5$

Be able to use the graph of sine to sketch a graph of cosecant (this helps locate its asymptotes, since secant has asymptotes when sine is zero). See example below.

Be able to use the graph of cosine to sketch a graph of secant (same idea as above).
7. For these, it is probably easiest to draw a right triangle. Remember, your answer to an inverse trig function is an angle, so $\cos ^{-1} u=\theta$ and that means thatcos $\theta=u$ or $\cos \theta=\frac{u}{1}$. Since $\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}$, this tells you that the adjacent leg is u and the hypotenuse is 1 . You can use the Pythagorean theorem to find that the opposite leg is $\sqrt{1-u^{2}}$ so $\cot \left(\cos ^{-1} u\right)=\cot \theta=\frac{\text { adjacent }}{\text { opposite }}=\frac{u}{\sqrt{1-u^{2}}}$
Similarly, if $\tan ^{-1} u=\theta$ then $\tan \theta=u$ or $\tan \theta=\frac{u}{1}=\frac{\text { opposite }}{\text { adjacent }}$ completing the triangle using Pythagorean theorem you see that the hypotenuse is $\sqrt{u^{2}+1}$. So $\sin \left(\tan ^{-1} u\right)=\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\frac{u}{\sqrt{u^{2}+1}}$
8. $-\frac{1}{2} ;-2 ;-\sqrt{3} ; 0 ;-\frac{\pi}{3} ; \frac{2 \pi}{3} ; \frac{\pi}{6}$

