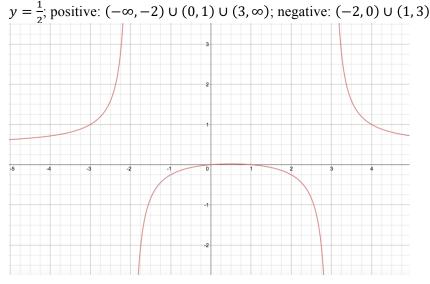
- f(x) is moved right 2, flipped over the x-axis, and stretched 3 in the y-direction (multiply y values by 3).
 g(x) is moved left 5 spaces and down 7.
 - h(x) is flipped over the y-axis and moved up 4 spaces.
- 2. y-intercept: (0,0); x-intercepts: (0,0), (1,0); Vertical Asymptotes: x = 3, x = -2; horizontal asymptotes:



y-intercept: (0,0); x-intercepts: (0,0), (4,0), (-5,0); no asymptotes; positive: $(-5,0) \cup (4,\infty)$; negative: $(-\infty, -5) \cup (0,4)$ Sorry, the graph did not turn out well for this one.

3. This factors to x(x + 3)(x - 1) > 0, so the critical points are x = 0, -3, 1. If you place these on a number line, you can test values on the intervals between these points; you are looking for which intervals make the inequality true. These are $(-3, 0) \cup (1, \infty)$. Second one: $\frac{(x-3)(x+2)}{x-1} \le 0$ critical points: x = -2, 1, 3 solution $(-\infty, -2) \cup (1, 3)$. Third one: Subtract the fraction on the right side from both sides and then get a common denominator between the two fractions. $\frac{1}{x-2} - \frac{2}{3x-9} = \frac{3x-9-2x+4}{3(x-3)(x-2)} = \frac{x-5}{3(x-3)(x-2)} < 0$ critical points x = 2, 3, 5 solution $(-\infty, 2) \cup (-\infty, 2) \cup (3, 5)$.

4. Domain: all reals
$$f^{-1}(x) = \frac{1}{2}(x+3)^2 + \frac{7}{2}$$

Domain: $x \neq 6$ $g^{-1}(x) = \frac{6x+4}{x-3}$

Domain: All Reals $k^{-1}(x) = -\frac{1}{3} \ln \left(\frac{x-2}{4} \right)$

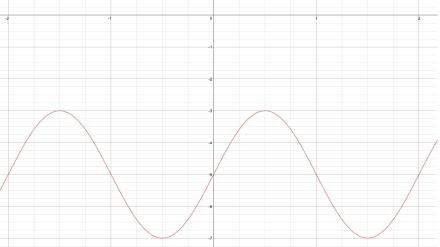
Domain:
$$x > \frac{8}{3}$$
 $j^{-1}(x) = \frac{1}{3}(10^x + 8)$

5. First one: take ln of both sides, then move the exponents in front as a multiplication (rules of logs) to get: $(2x - 5) \ln 3 = (x + 4) \ln 7$, then distribute ln 3 on the left side and ln 7 on the right side. Get everything with an x on one side and everything els on the other, factor out the x, and divide to get $x = \frac{5 \ln 3 + 4 \ln 7}{2 \ln 3 - \ln 7}$; Second one: combine into one log to get $log_3\left(\frac{x-6}{x+2}\right) = 2$. Now use the base of the log to rewrite this as an exponential equation $\frac{x-6}{x+2} = 3^2 = 9$. When you solve for x, you get x= -3, so this has no solution since x = -3 is not in the domain of the function;

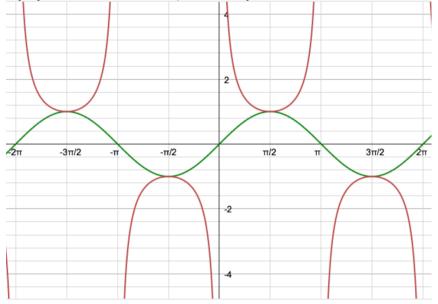
Third one: Solve for
$$\cos x$$
, which gives $\cos x = \pm \sqrt{\frac{1}{2}} = \pm \frac{\sqrt{2}}{2}$, so $x = \frac{\pi}{4} + k\pi, \frac{3\pi}{4} + k\pi$;

Fourth one: sine is $\frac{\sqrt{3}}{2}$ at $\frac{\pi}{3}$, $\frac{2\pi}{3}$, so this gives $3x + \frac{\pi}{6} = \frac{\pi}{3} + 2k\pi$ and $3x + \frac{\pi}{6} = \frac{2\pi}{3} + 2k\pi$ if you solve for x in these equations, you get $x = \frac{\pi}{18} + \frac{2k\pi}{3}$ and $\frac{\pi}{6} + \frac{2k\pi}{3}$

6. g(x): amplitude: 2, period: 2, midline: y = -5



Be able to use the graph of sine to sketch a graph of cosecant (this helps locate its asymptotes, since secant has asymptotes when sine is zero). See example below.



Be able to use the graph of cosine to sketch a graph of secant (same idea as above).

7. For these, it is probably easiest to draw a right triangle. Remember, your answer to an inverse trig function is an angle, so cos⁻¹u = θ and that means thatcos θ = u or cos θ = u/1. Since cos θ = adjacent/hypotenuse, this tells you that the adjacent leg is u and the hypotenuse is 1. You can use the Pythagorean theorem to find that the opposite leg is √1 - u² so cot(cos⁻¹u) = cot θ = adjacent/opposite = u/√1-u² Similarly, if tan⁻¹u = θ then tan θ = u or tan θ = u/1 = opposite/adjacent completing the triangle using Pythagorean theorem you see that the hypotenuse is √u² + 1. So sin(tan⁻¹u) = sin θ = opposite/hypotenuse = u/√u² + 1
8. -1/2; -2; -√3; 0; -π/3; 2π/3; π/6