
SECTION 9.1        STRICTLY DETERMINED GAMES 
 
We open the discussion of Game Theory first by noting we want only to look at aspects of what are called 
“Zero Sum Games”.  In these games, the Zero Sum comes from this notion: whatever money one player 
wins is exactly the amount of money the other player loses.  Simply put, it is an exchange of money from 
the losing player to the winning player, there are no third parties taking a piece of the pie. 
 
For simplicity, we will think of our 2 players as R(for Rows) and C(for Columns), where each players 
possible outcomes from the Game are represented in a matrix.  For example, we have the below Payoff 
Matrix:   
 

                                                2 1 3
3 2 4

C

R
− 

 − − 

 

 
Player R looks at the Rows to see their possible payouts.  If R chooses to play the option in Row 1, for 
example, the payoff will be a gain of $2, a loss of $1, or a gain of $3.  If R plays Row 2, payoffs possible 
are a loss of $3, a loss of $2, or a gain of $4. 
 
On the other hand, Player C looks at the Columns to see their payoffs, but must take the OPPOSITE of 
each number to give their gain/loss.  For example, in Column 1, C sees a 2 and a -3.  But this means a 
LOSS of $2 or a GAIN of $3.  Remember, we said that R would possibly see a gain of $2 in choosing to 
play Row 1, and that $2 must come from player C, so a loss for C. 
 
Let us suppose R sees the 4 in Row 2 and decides to play Row 2 over and over, hoping to hit that $4 gain, 
while C notices the -3(so a gain of $3 for C) in Column 1 and decides to play Column 1 over and over.  
As things stand, C will win $3 from R each play unless R changes things up.  Which R logically would 
do, switching to Row 1, since R would win $2 from C if C keeps playing Column 1.  However, now C 
will realize that repeated plays of Row 1 are occurring, so should choose to move from Column 1 to 
Column 2, where C now wins $1 each play. 
 
We are now seeing R play Row 1 repeatedly, and C play Column 2 repeatedly.  Does either of them 
improve their situation by making another change of strategy while their opponent does not change? 
If you think about it, the answer is “No”, neither of them will switch to another option because to do so 
will hurt their current gain/loss position. 
 
When such a situation occurs, it is called a Strictly Determined Game.  The specific gain/loss figure their 
respective choice targets is called the Value, v, of the game.  Here, we have that v = -1, a loss of $1 for R 
and so a gain of $1 for C every time the game is played. 
 
The position in the Payoff Matrix is referred to as a Saddle Point, a value which is both the Minimum of 
its Row and the Maximum of its Column.  Verify in our Payoff Matrix that this is the case in Row 1, 
Column 2, that the -1 is a Saddle Point in this sense. 
 
Now, we discuss how to identify whether a Payoff Matrix has a Saddle Point or not, and so whether the 
Game is Strictly Determined or not. 
 
One fairly simple way to do this is to look across each Row and Circle the lowest(minimum) number, and 
then look at each Column and Box the highest(maximum) number in each. 
 



If you have both Circled and Boxed a specific number, it must have been both a Minimum of its Row as 
well as a Maximum of its Column, the exact description we just said makes it a Saddle Point. 
 

Try it on our Payoff Matrix:               2 1 3
3 2 4

C

R
− 

 − − 

 

 
Now try it on the following Payoff Matrices, and decide whether each is Strictly Determined or not.  And 
if it is Strictly Determined, what is its Value, v? 
 

i)  2 1 3
3 2 0

C

R
− − 
 − 

                      ii) 2 8
5 6

C

R  
 
 

                      iii) 
3 1 4
2 2 2

0 3 5

C

R
− 

 − − 
 − 

 

 
 
APPLICATION: Rick and Chuck are playing a game.  Rick has cards with the numbers 2, 5, and 6, while 
Chuck has cards with the numbers 3, 4, and 9.  They must each show a card of their own choosing.  If 
they show cards where one is Even and one is Odd, Rick wins the difference of card values, but if they 
show cards that are both Even or both Odd, Chuck wins the value of the larger card showing. 
 
a) Construct a labeled Payoff Matrix to reflect the gains/losses each player will incur 
b) Determine whether the Payoff Matrix is Strictly Determined. If so, what is the Value? 
 
 
 
 
 
 
 
 

APPLICATION: Rhonda and Chrissy are competing drive-share operators.  Both of them use O ver
••

and 

Ryze phone apps to locate people seeking rides around town.  When both are using O ver
••

, Rhonda takes 
$100 in commissions from Chrissy, while if both use Ryze, Chrissy takes $250 from Rhonda.  If they are 

using different apps, Rhonda using O ver
••

 takes $150 from Chrissy, while if Chrissy uses O ver
••

, she takes 
$75 from Rhonda. 
 
a) Construct a labeled Payoff Matrix to reflect the gains/losses each player will incur 
b) Determine whether the Payoff Matrix is Strictly Determined. If so, what is the Value? 
 
 
 
 
 
 
 
 



SECTION 9.2                    MIXED STRATEGIES 
 
The Strictly Determined Games in 9.1 leave no doubt how the games outcomes will occur after repeated 
plays of the game force the players into the Saddle Point.  So, what might the Value, v, of a game be 
when it is not Strictly Determined?  This will depend on how often each player chooses to play their 
respective Row/Column options. 
 
We will continue using matrices to find our answer.  Thus, let us put the probabilities of R playing each 
Row into a Row Matrix, [ ]1 2 3R r r r= , and the probabilities of C playing each Column into a Column 

Matrix, 1

2

c
C

c
 

=  
 

.  Of course, how many elements we have in each of the matrices R and C depends on 

how many options each has in the Payoff Matrix, which we will call A. 
 
We now can use a very simple Matrix Multiplication, R A C⋅ ⋅ , the result of which is a 1x1 matrix 
containing the Value, v, of this particular situation.  Understand that v is most likely not an element in the 
Payoff matrix, but a number that would be the “average” amount won/lost by each player over many plays 
of the game using the assigned probabilities.  If v is positive, R wins on average, and if v is negative, C 
wins on average. 
 

Given  
2 3

1 4
A

− 
=  − 

, first analyze it to verify that it is NOT Strictly Determined. 

 
 
i) Let us assign probabilities for each player.  Start with R playing Row 1 70% of the time, and C playing 
Column 1 40% of the time.  Construct both matrices R and C, and the perform the calculation R A C⋅ ⋅  
What do you get for v?  Which player is winning on an average play right now? 
 
 
Since we see a positive value of v, R is currently winning, and so we expect C might alter strategy. 
 
ii) Keeping R’s probabilities the same, change C to playing Column 1 20% of the time instead of 40%. 
     What is the new value of v?  Did C improve their situation? 
 
 
 
iii) Because that change in strategy did not work for C, perhaps C flips probabilities around, now deciding 
to play Column 1 80% of the time.  What is the new value of v?  Did C improve their situation? 
 
 
iv) Now that C seems to be winning on average, they might be content to continue their current % of 
plays on Columns 1 & 2.  But now R might make a change, right?  So, select some new values for R and 
see if the new choices improve the value of v in R’s favor.  List each row matrix R and the v it gives. 
 
 
 
 
 
 
 



Probability plays are chosen by each side of the game, but the players will then attempt to improve their 
situation by adjusting their probabilities.  If it improves the value, v, of the game in their favor, perhaps 
they hold steady, but their opponent is likely adjusting their play.  Thus, what happens is both sides will 
continually try improving their outcome until perhaps we might find that neither can make any moves that 
will improve their situation. 
 
To explore this, let us go back to the last probabilities for C, which was 80% play of Column 1.  If you 
push R’s plays as far as possible towards Row 2, in fact all the way to 100%, R does push v to a value of 
0.  It seems this is the best R can force to happen for now.  But, let us have C make one more adjustment, 
to 70% in Column 1.  So, we have now these matrices and value of v:  
 

                   [ ] [ ]1 2

2 3 .7
0.5

1 4 .3
R r r A C v

−   
= = = = −   −   

 

 
You should have had [ ]0 1R = as the last used plays by R.  Try changing R’s probabilities to any valid 
choice you’d like.  Does it improve R’s position?    Try again.  And again.  And again. 
 
 
It turns out there is nothing R can do anymore, is there?  C has found their best, Optimal play 
probabilities, and no matter what R does, the value of the game will be $0.50 in C’s favor.  We will 
explore this further in section 9.3 and find out using Linear Programming and Simplex how to determine 
what probabilities BOTH players can locate as their optimal strategies. 
 
 
EXERCISE:  We return to the game between Rick and Chuck, where the below matrix represents the 
payoffs for this game, labeled according to the cards each can choose to play. 

                                                            3 4 9
2 1 4 7
5 5 1 9
6 3 6 3

C

R
− 

 − − 
 − 

 

Choose starting probabilities for each side, calculate v, and determine who is currently winning on 
average.  Then make adjustments to the probabilities for whichever player seems to be losing, to improve 
their average gain or loss in playing the game. 
 
 
 
 
 
 
 
 
 
 
Are you able to find Optimal Strategy probabilities for either player?  It is not too easy, is it? 
 
 
 



SECTION 9.3                              OPTIMAL STRATEGIES 
 
Now we take a look at how do determine the Optimal Strategy for both players, R and C.  A full 
description of the mathematical building of the following model was shown in lecture and can be read in 
your textbook.  This worksheet presents the necessary steps for solving that mathematical problem. 
 
Let us start with the Payoff Matrix below, which you should verify has no Saddle Point.  This means that 
the Optimal Strategies for our players R and C will not be 100% for either of their possible plays.  The 
first task will be to make all of the elements of the matrix positive numbers, and we prefer adding the 
smallest necessary Integer in accomplishing this.  What would you add to each element of A below? 
 

               
6 7

3 2
A

− 
=  − 

               Your altered Matrix:      
 
 
 
  

 

Now that we have ALL Positive numbers in our matrix, we can proceed.  It is far easier to solve this 
problem from the perspective of Player C, who needs to solve a Maximum Linear Programming problem, 
as opposed to R needing to solve a Minimum. 
 
First, let us use C’s generic probabilities:  1 2, ,..., nc c c  for as many Columns in A as necessary.  Multiply 
the Payoff matrix A times column C with the probabilities, where each row was shown to be v≤   in the 
full description of the solution.  For example, you might get  1 26 2c c v+ ≤  .  Do so for our example. 
 
 
 
 
 
 
Next, we will divide both sides of each Inequality by v, which is a positive value causing no changes to 
the inequality symbols.  Continuing the example made above: 
 

1 26 2c c v+ ≤     becomes this:  1 26 2c c v
v v v
+ ≤ .   Now, we introduce i

i
cz
v

= , for each i from 1 to n.  So, 

1 26 2c c v
v v v
+ ≤   becomes  1 26 2 1z z+ ≤ , which is a properly built Inequality constraint for use in Simplex. 

Convert your Inequalities in ' 'i ic s to z s .  Conveniently, our Objective function is to Maximize 1 2z z+ . 
Build the whole LP problem, which should resemble(but IS NOT) the one below: 
 

1 2

1 2

1 2

1 2

:
3 8 1
2 4 1

0, 0

Maximize z z
z z
z z

z z

+
+ ≤
+ ≤
≥ ≥

 

 
 
 
 
 
 



Now, let’s solve the LP problem, where it is best to use 'iy s  as the Slack Variables because in a manner 

similar to building i
i

cz
v

= , we also saw in the full solution that we build i
i

ry
v

= , where of course the 'ir s  

are the probabilities Player R uses as their Optimal play probabilities.  Fill in the below Initial Simplex 
Tableau: 
 

      

1 2 1 2

1 0 0 1
0 1 0 1
0 0 1 0

z z y y M 
 
 
 
 
  

   Choose a Pivot Element, either column 1 or 2 is available, and 

continue pivoting until you reach the Optimal Solution to the problem.  Write out your Final Tableau: 
 
 

                              

1 2 1 2

0
0
1

z z y y M 
 
 
 
 
  

 

 
We want to read off the values of the 'iz s   in the “normal way” and the 'iy s  in the “dual way”.  We also 
will need v.  Let us remember we Maximized 1 2z z+  which equals 1/v, and so v will always be found as 
the reciprocal of our optimal value of M in the final tableau. 
 

Since i
i

cz
v

=  for each i, we rearrange to get i ic v z= ⋅ .  Find, in fractions, each of our 'ic s  

 
 
 
 
 
 

In similar fashion, we noted that i
i

ry
v

= , so now i ir v y= ⋅ .  Find, in fractions, each of our 'ir s  

 
 
 
 
 
 
One last item to address, which is that the v we found is for the adjusted matrix.  To fix this, we reverse 
the very first step we made, where we chose to add an integer to each Payoff matrix element, and we now 
subtract that from the current v to get the correct v for the original Payoff Matrix. 
 
 
You should have these values:  1 2 1 25 /18 13 /18 , 1/ 2 , 1/ 2 , 1/ 2r r c c v= = = = =  
 
 



EXERCISES: find the Optimal plays for each player, R and C, in the below Payoff Matrices 
 

i)  
4 1

3 2
A

− 
=  
 

                  ii)  
2 4
1 6

3 5
A

− 
 = − 
 − 

              iii)  
2 1 1

0 2 3
2 1 3

A
− − 
 = − 
 − 

 

 
 
What do you notice about the Optimal Play probabilities in part (i)?  What was the value, v?  Go back and 
look at the original matrix, and check it for a saddle point. 
 
 
 
 
 
APPLICATION:  the rulers of two small countries, Rey and Caesar, need to decide each year which 
industry to put research funding into.  When both rulers put funding into their energy sectors, Caesar’s 
country will see a gain of $3,000,000 in trade between the two countries, while if both countries put 
funding into their technology sectors, Rey’s country sees a gain of $4,000,000 in trade.  If they put 
funding into different sectors, Rey’s country gains $7,000,000 when he funds energy, while Caesar’s 
country gains $5,000,000 when he funds the energy sector. 
 
i) Build a Payoff matrix for this situation.  Determine that it is NOT strictly determined, it has no saddle 
point. 
 
 
 
 
 
 
ii) We would like to find the optimal strategies for the two leaders, but notice that using values like 
3,000,000 or 7,000,000 are quite unwieldy, especially when we want to make all of the values in our 
Payoff Matrix positive.  Adding 5,000,001 to each would result in truly imbalanced values for the purpose 
of solving a Simplex Tableau. 
 
So, rebuild the Payoff matrix using numbers in Millions, for example using 3 for 3,000,000.  We will just 
want to remember to think of our ultimate value v as also “in Millions”.   
 
 
 
 
 
 
iii) Use this new version of the Payoff Matrix to find the Optimal Strategies for each country’s leader and 
decide which of their countries will have an expected gain in trade “on average” each year. 
 


