1. Find the following limits:
a) $\lim _{x \rightarrow 4} \frac{\sqrt{6 x+1}-5}{x-4}$
b) $\lim _{x \rightarrow 4} \frac{x^{2}-2 x-8}{x-4}$
2. Determine which statement best describes the continuity of the function:
$f(x)=\left\{\begin{array}{llc}x^{2}-3 & \text { if } & x<-2 \\ 2 x+5 & \text { if } & -2 \leq x<1 \\ 7 x & \text { if } & x>1\end{array}\right.$
a) $f(x)$ is Continuous for All Real values of x
b) $f(x)$ is Continuous for All Reals except $x=-2$
c) $f(x)$ is Continuous for All Reals except $x=1$
d) $f(x)$ is Continuous for All Reals except $x=-2$ and $x=1$
3. Find the derivative of: $f(x)=7-x+4 x^{2}+5 x^{4}$
4. Find the derivative of: $y=\frac{2}{x^{3}}-\frac{4}{x}$
5. Find the equation of the line tangent to $y=x^{3}-2 x^{2}+2$ at $x=\frac{1}{2}$
6. Use Marginal analysis to predict the estimated profits from the $221^{\text {st }}$ unit sold if $C(x)=1200+5 x$ and $R(x)=-.04 x^{2}+32 x-200$.
7. Use Implicit Differentiation to find dy/dx for: $y^{3}-5 x+6=3 x^{2} y^{4}$
8. Find derivatives of the following:
a) $h(x)=\frac{x+3}{x^{2}+2}$
b) $y=\left(2 x^{3}-5\right)^{6}$
c) $F(x)=\ln \left(8 x+2 x^{4}\right)$
d) $h(x)=e^{4 \sqrt{x}}$
9. Find the derivative of: $h(x)=x^{3} e^{-x^{2}}$
10. Find the Absolute Maximum and Absolute Minimum of $f(x)=-x^{3}+4 x^{2}+3$ on $[-1,5]$
11. Find the derivative of: $h(x)=\ln \left(4 x^{2}-2 x^{3}\right)$
12. How long will it take an investment of $\$ 45000$ to become $\$ 100000$ if it earns 4.65% compounded continuously?
13. How much does it take invested today to grow to $\$ 30000$ at 4.8% compounded continuously in 8 years?
14. Find the Elasticity function for the Demand function, $D(x)=800-4 x$, and then determine the elasticity at $\mathrm{x}=75 . \quad E(x)=\frac{-x \cdot D^{\prime}(x)}{D(x)}$
15. Take first and second derivatives of $f(x)=54 x^{2}-x^{4}$, and then build a sign chart to determine Intervals of Concavity
16. Find the specific function $\mathrm{f}(\mathrm{x})$ satisfying the following conditions: $f^{\prime}(x)=6 x^{2}+x-2$ and $f(4)=5$
17. Evaluate the Integral: $\int_{-1}^{3}\left(4 x^{3}-4 x+3\right) d x$
18. Find the value of the each Definite Integral:
a) $\int_{-2}^{1} x^{2}\left(x^{3}+3\right)^{3} d x$
b) $\int_{-2}^{1} x^{2} e^{x^{3}+1} d x$
c) $\int_{2}^{10} \frac{2 x}{x^{2}+4} d x$
19. Use Integration by Parts: $\int(x+2) e^{4 x} d x$
20. Find the Area bounded by $y=x+5$ and $y=x^{2}-6 x+11$
21. Tim invests money in a 403b account according to the function $f(t)=15000 e^{.02 t}$. If the account earns continuous gains at 5.5%, and the contributions are made for 25 years, what will be the value of the account? Use: $F V=e^{k T} \int_{0}^{T} R(t) e^{-k t} d t$ and round to the nearest $\$ 1$.
22. An investor is looking at a business opportunity, which will pay him $\$ 100000$ each of the next 8 years. Assuming continuous growth at 6%, what is the Present Value of this income stream?
Use: $P V=\int_{0}^{T} R(t) e^{-k t} d t$
23. Find $f(-3,2)$ if $f(x, y)=\frac{4 x y^{2}}{(2 x+y)^{2}}$
24. Find Critical Points and then whether they are a Relative Max, Relative Min, or Saddle Point. $f(x, y)=x^{2}+y^{2}-x y+x^{3}$
25. The function $f(x, y)=2 x^{4}+y^{2}-12 x y$ has derivatives: $f_{x}=8 x^{3}-12 y, f_{y}=2 y-12 x$. Find the critical points and determine whether each is a Relative Max, Relative Min, or Saddle Point.
26. Find the Partial Derivative $f_{x y}$ for $f(x, y)=\frac{1}{y} \ln x$
27. Find ALL 5 first and second order Partial Derivatives of:
a) $P(x, y)=2 x^{4}-y^{5}+4 x y^{6}$
b) $f(x, y)=\frac{2 x}{y}-\frac{y}{6 x}$
28. Use the Method of Lagrange Multipliers to find the Maximum and Minimum of $f(x, y)=2 x y$ subject to $x^{2}+y^{2}=18$
