
SECTION 3.4:                                        CHAIN RULE 
 
The next important technique for finding the Derivative of a function is Chain Rule.  Similar to the 
Product and Quotient Rules, you must choose what “part” of the original function to declare as f(x) and 
which is g(x).  This is not always quite as obvious, and actually can sometimes be done in multiple ways. 
 
First, then, some practice at decomposing some composite functions.  Start with ( )8( ) 3 5h x x= + , which 
we would like to think of in the form ( ) ( ( ))h x f g x=  and so need to choose f and g.  The first difference 
from Product/Quotient rules is that YOU SHOULD CHOOSE g(x) FIRST!!  We are describing it as 
f(g(x)), where g(x) is clearly shown as “inside” f.  What looks to be “inside” for this h(x)?  Let’s look at 
two possibilities. 
 
i) What if we choose ( ) 3g x x= ?  Then we ask “what is being done to g?”.  Look at h(x), and if you say “5 
is being added to g(x) and then it is raised to the 8th power”, we design f(x) to do exactly that.  So, 

( )8( ) 5f x x= + .  The problem here is that f(x) is itself still a “composite function”, and we really have not 
improved the situation. 
 
ii) What if we choose ( ) 3 5g x x= + ?  Now, when we ask “what is being done to g?”, a much simpler 
description of “it is being raised to the 8th power” is our answer.  So, choose 8( )f x x= , and this time f(x) 
is NOT a composite, but rather one of our basic derivative functions, a Power function in particular. 
 
Your goal in choosing g(x) first is to make sure f(x) is a “simple” derivative function, and in this Business 
Calculus course, that means one of three cases:  a Power function, ( ) nf x x= , an Exponential function, 

( ) xf x e= , or a Logarithm, ( ) lnf x x= .  You have taken the derivative of each of these many times by 
now, but should do some extra practice on each just in case. 
 
DECOMPOSITION PRACTICE: take each function below and decide first g(x) and then the appropriate 
f(x) from one of , , lnn xx e x  
 
a) ( )63( ) 2h x x= +                                   b) 4 1( ) xh x e −=                           c) 2( ) 3 7h x x x= +  
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Now that we have practiced breaking composite functions down in a useful manner, we take a look at the 
general version of Chain Rule:  ( ) ( ( )) , ( ) ( ( )) ( )If h x f g x then h x f g x g x′ ′ ′= = ⋅ .  Notice that similar to 
Product and Quotient rules, once we decided our choices of f(x) and g(x), we need both of their 
derivatives, f and g′ ′ .  We go back to the original example, ( )8( ) 3 5h x x= + , where we decided our best 
choices of f and g are listed below.  Find both of their derivatives. 
 

        ( )8( ) 3 5h x x= +                             
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Our formula tells us to start with placing g “inside” f ′ , and then multiply by g′ .  Sometimes a bit of 

simplifying can be done, as is the case here.  Once simplified, did you get this?  ( )7( ) 24 3 5h x x′ = +  
 
 
EXERCISES:  use the above process to determine the derivatives of each function 
 
i) ( )52( ) 6h x x= −                                                         ii) 

25 2( ) xh x e +=  
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iii) ( )5( ) ln 8 3h x x= +                                                  iv) 3 2( ) 6 7h x x= +  
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The demonstration and exercises so far have been all about use of one single formula and concept of 
Chain Rule, which is meant to show that EVERY COMPOSITE FUNCTION’S DERIVATIVE CAN BE 
DONE IN THIS GENERAL WAY. 



However, mathematics is full of many different styles of functions, and we have formulated “short-cut” 
formulas for Chain Rule for most of the function styles.  We therefore present here a short-cut for each of 
the three basic function styles seen in Business Calculus. 

1) For Power functions, ( )63( ) 2h x x= + , we can use General Power Rule: [ ] [ ] 1( )
( ) ( )

n
nd f x

n f x f x
dx

− ′= ⋅ ⋅  

Bring the exponent out front, subtract 1 from the “old” exponent on the “inside function” and then 
multiply by the derivative of that inside function.  Do so for h(x) above.  Then simplify. 
 
 
 
 
Did you get:  ( )52 3( ) 18 2h x x x′ = + ?  Try these, rewriting the function first, if necessary. 

a) ( )54( ) 2 7h x x= +                            b) 34 3y x x= +                           c) 
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2) For Exponential functions, 
2 6( ) xh x e += , we use 

( )
( ) ( )
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   ′= ⋅  which tells us to quite simply 

first rewrite the original exponential function, then multiplied by the derivative of the exponent. Do so. 
 

( )h x′ =  
 
 
Try these:   a) 9 2( ) xh x e −=                           b) 

4 5x xy e +=                      c) 
22( ) xh x e−=  

 
 
 
 

3) For Natural Logarithm functions, ( )3( ) ln 6h x x x= + , we use:  [ ]ln ( ) ( )
( )

d f x f x
dx f x

′
=  which tells us to 

place the derivative of what is inside the ln above that “inside function”:  
2

3

3 6( )
6

xh x
x x

+′ =
+

 

 
Try these:  a) ( )3( ) ln 5h x x=                    b) ( )ln lny x=             c) ( )2( ) ln 5h x x x= +  
 
 
 
 
 
 
 
 



SECTION 3.5:                                IMPLICIT DIFFERENTIATION 
 
We introduce one final technique for taking derivatives, which borrows help from Chain Rule and is 
necessary for certain situations that arise when we are unable to isolate y in a relation between x and y.  
Such equations are called Implicit Equations, so the technique is called Implicit Differentiation.  We start 
with an example that does not truly need this technique, but this means we will be able to verify the 
correctness of the derivative we create by other means. 
 
                                                           3 2 5 4y x x= + +  
 
Handle every variable term as if it is a composite function and needs Chain Rule, and good practice when 

learning this method is to write the “derivative of the inside function” in [ ]d
dx

 form.  As examples, if you 

have the term 2y , its derivative should be written as 2 dyy
dx

, and if you have 2x , its derivative should be 

written as 2 dxx
dx

.  Your understanding of fractions says that dx
dx

 reduces away, but it is extremely 

important that in the “y terms” that a dy
dx

 is present after taking the derivative of that term.  The dy
dx

 is 

your actual derivative of the overall equation once you isolate it.  Back to our example, take the derivative 
of each term: 
 
 
 
 
 

Do you have:  23 2 5 0dy dx dxy x
dx dx dx

= + +   ?  Of course, the 0 can be ignored and the dx
dx

 fractions can be 

reduced to 1’s.  You now have this:  
 

23 2 5dyy x
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= +    , where we now isolate dy
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 by dividing both sides by 23y .  Thus 
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Going back to the original, 3 2 5 4y x x= + +  , we can take Cube Roots and get: 3 2 5 4y x x= + +  
Use Chain Rule to obtain the derivative of this version of the function, and then use Algebra to see that 
both derivatives are indeed the same, bust with different forms. 
 
 
 
 
 
 
 
 
 
 
 



Now let’s add in an element of difficulty.  Take the derivative of each term:  
 
                                                 2 47 5 8y x x y+ = + +  
 
 
 
 

You should have more than one instance of dy
dx

, which we need to have completely isolated.  A little bit 

of Algebra comes in handy again.  Move all terms with dy
dx

 to one side of the equation, and those without 

it to the other.  This allows us to “factor out” the dy
dx

 on its side of the equation, and then divide away 

whatever is inside the ( )’s.  Do so: 
 
 
 
 
 
 
 

Did you get one of these:  
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−
?  Notice these are equivalent to one another if 

you simply multiply by 1−  to both the top and bottom of the fraction.  Try these: 
 
a)  3 2 56 3 2y x x y+ − = +                                                b) 2 2 4y xe x e y+ = +  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Now let us add another level of difficulty, mixing in the need for Product Rule.  Look at the term with 
both x and y in this equation, which of course has multiplication built into it, a PRODUCT. We therefore 
treat each portion as f and g and set up Product Rule for that term.  To help you out, places for 

, , ,f f g g′ ′  are provided. 
 
                                                                         3 2 27 5 4x y x y+ = +  
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Once the tricky part of using Product Rule is done, we notice we have something rather similar to the 
examples on the previous page, so continue to isolate dy/dx in the way you did for those examples. 
 
 
 
 
 
 
 
 
 
EXERCISES: Find dy/dx for each of these Implicit Equations: 
 
i) 3 4 27 6x y x y− + = +                                                    ii) 2 28 3 5 2x x y y+ = + +  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



SECTION 3.6:                                       RELATED RATES 
 
Related Rates borrows the derivative techniques of Chain Rule and Implicit Differentiation to assist us in 
seeing how the rate of change of one variable affects the rate of change of another.  For example, if the 
price of an item is increasing, we expect that demand for this item probably will decrease.  But is the rate 
of increase in price small or large?  One would expect different decrease levels in demand for small versus 
large price increases, right?  This use of derivatives gives us some of that information. 
 
Start with a relatively simple example with a geometric concept where the visuals might help you in 
understanding why the two rates of change are related to one another. 
 
Suppose the fire department has a 30-ft long ladder leaning up against a wall, but because of some ice on 
the ground, the bottom of the ladder is sliding away from the wall at a rate of 2-ft per second.  That we 
describe it in what can be shown with a fraction, / secft , makes this a Rate of Change.  Specifically, in 
math terms, the rate at which the distance from the wall the bottom of the ladder is growing with respect 
to time, in seconds.  If we give that distance from the wall the variable a, then this rate is /da dt .  It is 
important to note the denominator is dt, because this tells us our derivatives must be taken “with respect to 
t”. We used a for the distance on the ground, let us use b for the height up the wall.  Think about pulling a 
ladder’s bottom away from a wall; the height where the top of the ladder touches the wall will start 
coming down, or decrease.  How are these two distances related to one another?  Picture the ladder, it 
forms a Right Triangle, which brings to mind the Pythagorean Theorem: 2 2 2a b c+ = .  We have already 
declared a to be the ground, b as the wall height, while c is, of course, the ladder itself.  But because the 
ladder is a constant length of 30-ft, we place 30 in for c in our formula.  We now have this: 2 2 900a b+ = , 
which formulates the relationship connecting the distance from the wall to the height up the wall. 
 
Question: If the bottom of the ladder is sliding away from the wall at 2-ft/sec, how fast is the top of the 
ladder moving when the bottom of the ladder is 18 feet from the wall? 
 
A) What do we know? 18 , / 2a da dt= =  and we have the relation: 2 2 900a b+ = .   
 
B) We want /db dt (the rate of change of the height up the wall), and so we take the derivative of our 
relation, but “with respect to time, t”, and that means we must do it using Implicit Differentiation 
techniques.  Do so, what do you get? 
 
 
 
 
C) Isolate /db dt , what do you get? 
 
 
 
D) We know 24a = , plug it into 2 2 900a b+ =  to get b, and then plug in , , /a b and da dt  to determine 
our desired  /db dt .  Do you get / 3 / 2db dt = − ? 
 
 
 
 
 



EXAMPLE: One snowy winter, a group of kids decided to build the biggest snowman ever.  They started 
rolling up a snowball in a field, pushing it around and around to form a perfect sphere, eventually reaching 
a size where the sphere had a radius of 100cm(for those unsure of the metric system, this would be about 
6 feet, 7 inches in height).  They rolled up a second snowball, but were unable to figure out how to mount 
it atop the first snowball, and so abandoned the snowman project.  Springtime soon followed and the giant 
100cm radius snowball began to melt, the radius shrinking at a rate of 2cm/day.  When the radius is down 
to 75cm, how much volume of water is melting off the snowball per day? 
 
A) What information do we know?  Assign variables as necessary.  Also decide what rate are we looking 
to determine, in notational form(for example, db/dt as on the previous page)? 
 
 
 
 
 
 
B) What can we use as a relation between variables?  A geometry formula will help again. 
 
 
 
 
 
 
C) Take the derivative of your formula “with respect to time, t”.   
 
 
 
 
 
 
D) Do you have everything you need to plug in and solve for our desired rate?  If so, do so, and if not, 
obtain any missing values by use of the relation formula itself(as we did on the previous page). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Did you get : 3/ 141372 /dV dt cm day= , rounded to the nearest whole number. For those curious, this 
translates to about 141.4 liters per day or roughly 37.4 gallons of water per day. 



EXERCISE: Suppose that the Quantity, x in 1000’s, and Price, p in $, are related by the Price-Demand 
equation given here: 
                                                          2 22 6 3 650p xp x+ + =  
 
i) If the Price is changing at a rate of $3/month, at what rate is the Quantity demanded changing when the 
Price is $10? 
 
a) We know 10 / 3p and dp dt= = but not x.  Substitute 10p =  into the equation and then use the 

Quadratic Formula to verify you get 10 5 10 5.8x = − + ≈  
 
 
 
 
 
 
b) Now take the derivative Implicitly, with respect to time t.  Solve it for /dx dt  and then plug in the 
known values to determine dx/dt. 
 
 
 
 
 
 
 
 
 
 
 
ii) What if instead we wish to know the rate of change of price when the change in demand is 
4000(remember x is in 1000’s) and the quantity is currently 10000?  (Hint: you might need Quadratic 
Formula again, but it should be factorable this time) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



SECTION 3.7:                              ELASTICITY OF DEMAND 
 
The construction and underlying logic that leads to the formula below was given in class, so we do not 
present it again here.  We present some examples using the formula to build the Elasticity function, and 
then use it. 

                                                           ( )( )
( )

p f pE p
f p

′− ⋅
=  

 
EXAMPLE:  If the demand is given by ( ) 500 8x f p p= = − , build the Elasticity function and then 
determine the Elasticity when (i) p = 20 and (ii) p = 40 
 
a) To build E(p), first find ( )f p′ , place it into the formula and simplify the new function. 
 
 
 
 
 
b) Plug in each price: (i) 20 and (ii) 40 
 
 
 
 
 
 
EXAMPLE: If the demand is given by 2( ) 6000 5x f p p= = − , build the Elasticity function and then 
determine the Elasticity when (i) p = 25, (ii) p = 15 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Let us continue looking at the last example, ( ) 500 8x f p p= = − , and the idea of Unit Elasticity, or when  
( ) 1E p = .  Unit Elasticity suggests that a small change in price will have a similarly small effect on the 

demand, and that total revenues cannot be improved.  In other words, that revenue is at a maximum. 
 

You should have found the Elasticity function to be 
2

2

10( )
6000

pE p
p

=
−

.  Set the function equal to +1 and 

solve for the value of p which satisfies this condition. 
 
 
 
 
 
 
 
 
 
 
 
 
 
EXERCISE: If the demand is given by ( ) 800 4x f p p= = − , build the Elasticity function and then 
determine the Elasticity when (i) p = 250, (ii) p = 75.  Also determine at what value p we find Unit 
Elasticity by the method described on the top half of this page. 
 


