CH 2
2.1-2.2

1) Show proper work in finding each of the following limits, if they exist. If the limit does not exist, state as such and show why.
a) $\lim _{x \rightarrow 4}\left(2 x^{2}-11 x+5\right)$
b) $\lim _{x \rightarrow-1} \frac{x^{2}-2 x-3}{x^{2}+6 x+5}$
c) $\lim _{x \rightarrow \infty} \frac{x^{2}+7 x+10}{8 x-3 x^{2}}$
d) $\lim _{x \rightarrow \infty} \frac{8 x-7}{6 x^{2}-5 x+9}$
2.4
2) Use the Definition of the Derivative to determine the derivative of the function below.

You may double check by other techniques, but no credit given for other techniques.

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& f(x)=6 x^{2}-3 x+5 \quad \text { or } \quad f(x)=\sqrt{6 x+7} \quad \text { or } \quad f(x)=\frac{7}{4 x-3}
\end{aligned}
$$

2.5

1) Find the Derivative of each of the following
a) $f(x)=2 x^{6}-3 x^{4}+5 x+7$
b) $y=\sqrt{x}+\sqrt[5]{x}$
c) $g(x)=\frac{6}{\sqrt[3]{x}}$
d) $k(x)=\frac{1}{x}+\frac{3}{x^{4}}$
e) $h(x)=\left(x^{2}-3 x\right)(4 x+5)$
f) $q(x)=\frac{3 x^{5}-4 x^{2}+7}{x^{2}}$
2) Find the Slope-Intercept Equation of the line Tangent to each given function at the specified $x$-value.
a) $f(x)=2 x^{2}-7 x+5$ at $\quad x=4$
b) $f(x)=\sqrt{2 x-1}$ at $x=5$
c) $f(x)=x^{3}-6 x+3$ at $x=2$
3) Demand for Widgets based on price is given by: $D=150000-4 p^{2}$.
(Hint: $\Delta y=f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right) \quad$ and $\left.\quad d y=f^{\prime}\left(x_{0}\right) \Delta x\right)$
a) Estimate the Change in Demand if the price, $p$, is changed from $p=80$ to $p=90$
b) Find the actual(or exact) Change in Demand if the price, $p$, is changed from $p=80$ to $p=90$
c) Estimate the Change in Demand if the price, $p$, is changed from $p=120$ to $p=108$
2.7
4) Given the Cost and Revenue functions below, do the requested tasks

$$
C(x)=30000+160 x \quad R(x)=500 x-0.8 x^{2}
$$

a) Find the Marginal Revenue function: $\qquad$
b) Find the estimated change in Revenue from the $141^{\text {st }}$ item $\qquad$
c) Find the Profit function:
d) Find the Marginal Profit function:
e) Find the estimated change in Profit from the $161^{\text {st }}$ item $\qquad$
2)

CH 3
3.1

1) Use the Continuous Compounding of Interest formula as needed:
a) How much will $\$ 7500$ be worth in 8 years at $4.25 \%$ compounded continuously
b) How much must be invested by the Munroe's today such that they will have $\$ 80,000$ in 18 years to send their newborn baby to college if they can invest it at $5.3 \%$ continuously compounded?
c) How long does it take for $\$ 3000$ to grow to $\$ 11000$ at $4.5 \%$ continuously compounded?
3.2
2) Find the Derivative of each of the following
a) $f(x)=\ln x$
b) $y=e^{x}$
c) $g(x)=\ln 8 x$
d) $f(t)=e^{-0.04 t}$
3) Find the derivatives of the following functions.
a) $y=x^{4} e^{x^{2}+1}$
b) $h(x)=\frac{5 x+6}{x^{2}+1}$
c) $y=x^{2} \ln (6 x)$
d) $h(x)=\frac{3 x^{2}+4}{x^{2}-1}$
3.4
a) $F(x)=\ln \left(x^{4}+3 x^{2}+7\right)$
b) $F(x)=e^{3 x^{2}+5 x}$
3.5
4) Use Implicit Differentiation to find $d y / d x$
a) $6 x^{4}+y^{5}=3 x^{2}+7 y+8$
b) $4 x^{2}+y^{4}=7 x^{5} y^{3}$
5) Use Implicit Differentiation to find $d y / d x$ at $(2,3)$ for: $6 x+y^{2}+6=3 x^{2}+5 y$
3.6
6) The Price-Demand relationship for daily contracts of oil and the price per barrel of oil is given as:

$$
p=2500-0.04 x^{2} \quad, \quad 0 \leq x \leq 250
$$

a) If the rate of change in the price of a barrel of oil is decreasing by $\$ 3 /$ week, at what rate is demand changing when 100 contracts are being ordered?
b) If the rate of change in demand is an increase in 10 contracts per week, what is the rate of change in price when 100 contracts are being ordered?
3.7

1) Construct the Elasticity function, $\mathrm{E}(p)$, for the given Price-Demand function and then use it to answer the questions which follow.

$$
x=f(p)=500-0.08 p^{2}
$$

a) What is the Elasticity at $p=20$ ?
b) What is the Elasticity at $p=60$ ?
2) Construct the Elasticity function, $\mathrm{E}(p)$, for the given Price-Demand function and then use it to answer the questions which follow

$$
x=f(p)=1200-3 p^{2}
$$

a) What is the Elasticity at $p=16$ ?
b) What is the Elasticity at $p=5$ ?

CH 4
4.1

1) Given the function below, follow the steps below.
a) Find all Critical Points, in Coordinate form.
b) Show work/reasoning in determining Intervals of Decrease and Intervals of Increase
c) Determine whether each Critical Point is a Relative Minimum, Relative Maximum, or Neither.
i) $f(x)=-2 x^{3}+3 x^{2}+36 x+11$
ii) $f(x)=6 x^{4}+8 x^{3}+7$
