1. Use the first derivative test to identify all relative minimums and maximums. Be sure to identify the intervals where the function is increasing and decreasing.

a.
$$f(x) = x^3 + x^2 - 8x + 5$$

b.
$$f(x) = \frac{x^2}{x-2}$$

c.
$$f(x) = 3 - \sqrt[3]{(x-5)^2}$$

2. Use the second derivative test to identify all relative minimums and maximums. Be sure to identify the concavity at each critical point.

a.
$$f(x) = -x^2 + 12x - 9$$

b.
$$f(x) = 3x^4 - 2x^3 - 12x^2 + 18x + 3$$

3. Find absolute minimum and absolute maximum for the function on the interval.

a.
$$f(x)=x^2-6x-4$$
 on $[0,4]$

b.
$$f(x) = -x^3 - 3x^2 + 9x + 6$$
 on $[-4, 2]$

c.
$$f(x) = -4x^2 + 6x - 9$$
 on $(-\infty, \infty)$

4. Evaluate the following limits:

a.
$$\lim_{x \to 1} \frac{\ln x}{x}$$

b.
$$\lim_{x \to 1} \frac{x^3 - 1}{4x^3 - x - 3}$$

c. $\lim_{x \to 1} \frac{x^2}{e^x - 1 - x}$

$$\text{c.} \quad \lim_{x \to 1} \frac{x^2}{e^x - 1 - x}$$

5. Find all points of inflection. Be sure to identify the intervals where the function is concave up and concave down.

a.
$$f(x) = x^4 - 4x^3 + 10$$

b.
$$f(x) = 3x^4 - 7x + 1$$

c.
$$f(x) = 2x^3 - 15x^2 + 12x + 3$$

- 6. Solve the following optimization questions.
 - a. A company wants to construct an open box with a square base that has a volume of 32 cubic feet. How should the box be constructed to minimize surface area?
 - b. A farmer wishes to build a pen adjacent to a river. He needs fencing for three sides. He has 240 feet of fencing. How should be build his fence in order to maximize the area of the pen?
 - c. A company manufactures and sells x digital cameras per week. The weekly price-demand function is p = 400 - 0.4x and the weekly cost function is C(x) = 2000 + 160x.
 - i. How many items should be manufactured and sold to maximize revenue?
 - ii. How many items should be manufactured and sold to maximize profit?
- 7. Find the following antiderivatives.

a.
$$\int (5x^2 + 3x + 1) dx$$

b.
$$\int \frac{5x^3 + 7x^2 - 3x + 1}{2x} dx$$

c.
$$\int \left(4\sqrt{x} + \frac{9}{x^5}\right) dx$$

8. Find the following antiderivatives.

a.
$$\int 3x \left(7x^2 + 9\right)^5 dx$$

b.
$$\int \frac{9x}{5x^2 + 11} dx$$

c.
$$\int x e^{5x^2} dx$$

9. Use four rectangles and left endpoints to approximate the following integrals.

a.
$$\int_{0}^{4} (x^2 + 1) dx$$

a.
$$\int_{0}^{4} (x^{2}+1) dx$$

b. $\int_{1}^{9} (x^{2}-20x-6) dx$

c.
$$\int_{0}^{2} 3^{x} dx$$

10. Evaluate 9a and 9b using the fundamental theorem of calculus. Evaluate 9c using the fundamental theorem and knowing $\int 3^x dx = \frac{3^x}{1_{11}} + C$

11. Evaluate the following definite integrals.

a.
$$\int_{1}^{4} \left(\frac{1}{x} - x^{2}\right) dx$$

b.
$$\int_{0}^{1} 8x(x^2+1)^3 dx$$

$$c. \int_{2}^{5} \frac{1}{\sqrt{6-t}} dt$$

12. Find the area between the curves.

a.
$$f(x)=5-x^2$$
 and $g(x)=2-2x$

b.
$$y=x^3+1$$
 and $y=0$ for $0 \le x \le 2$.

c.
$$f(x)=x^2$$
 and $g(x)=\sqrt{x}$