Math 165
Test 2
Review Questions

1. Use the first derivative test to identify all relative minimums and maximums. Be sure to identify the intervals where the function is increasing and decreasing.
a. $f(x)=x^{3}+x^{2}-8 x+5$
b. $f(x)=\frac{x^{2}}{x-2}$
c. $f(x)=3-\sqrt[3]{(x-5)^{2}}$
2. Use the second derivative test to identify all relative minimums and maximums. Be sure to identify the concavity at each critical point.
a. $f(x)=-x^{2}+12 x-9$
b. $f(x)=3 x^{4}-2 x^{3}-12 x^{2}+18 x+3$
3. Find absolute minimum and absolute maximum for the function on the interval.
a. $f(x)=x^{2}-6 x-4$ on $[0,4]$
b. $f(x)=-x^{3}-3 x^{2}+9 x+6$ on $[-4,2]$
c. $f(x)=-4 x^{2}+6 x-9$ on $(-\infty, \infty)$
4. Evaluate the following limits:
a. $\lim _{x \rightarrow 1} \frac{\ln x}{x}$
b. $\lim _{x \rightarrow 1} \frac{x^{3}-1}{4 x^{3}-x-3}$
c. $\lim _{x \rightarrow 1} \frac{x^{2}}{e^{x}-1-x}$
5. Find all points of inflection. Be sure to identify the intervals where the function is concave up and concave down.
a. $f(x)=x^{4}-4 x^{3}+10$
b. $f(x)=3 x^{4}-7 x+1$
c. $f(x)=2 x^{3}-15 x^{2}+12 x+3$
6. Solve the following optimization questions.
a. A company wants to construct an open box with a square base that has a volume of 32 cubic feet. How should the box be constructed to minimize surface area?
b. A farmer wishes to build a pen adjacent to a river. He needs fencing for three sides. He has 240 feet of fencing. How should be build his fence in order to maximize the area of the pen?
c. A company manufactures and sells x digital cameras per week. The weekly price-demand function is $p=400-0.4 x$ and the weekly cost function is $C(x)=2000+160 x$.
i. How many items should be manufactured and sold to maximize revenue?
ii. How many items should be manufactured and sold to maximize profit?
7. Find the following antiderivatives.
a. $\int\left(5 x^{2}+3 x+1\right) d x$
b. $\int \frac{5 x^{3}+7 x^{2}-3 x+1}{2 x} d x$
c. $\int\left(4 \sqrt{x}+\frac{9}{x^{5}}\right) d x$
8. Find the following antiderivatives.
a. $\int 3 x\left(7 x^{2}+9\right)^{5} d x$
b. $\int \frac{9 x}{5 x^{2}+11} d x$
c. $\int x e^{5 x^{2}} d x$
9. Use four rectangles and left endpoints to approximate the following integrals.
a. $\int_{0}^{4}\left(x^{2}+1\right) d x$
b. $\int_{1}^{9}\left(x^{2}-20 x-6\right) d x$
c. $\int_{0}^{2} 3^{x} d x$
10. Evaluate 9 a and 9 b using the fundamental theorem of calculus. Evaluate 9c using the fundamental theorem and knowing $\int 3^{x} d x=\frac{3^{x}}{\ln 3}+C$
11. Evaluate the following definite integrals.
a. $\int_{1}^{4}\left(\frac{1}{x}-x^{2}\right) d x$
b. $\int_{0}^{1} 8 x\left(x^{2}+1\right)^{3} d x$
c. $\int_{2}^{5} \frac{1}{\sqrt{6-t}} d t$
12. Find the area between the curves.
a. $f(x)=5-x^{2}$ and $g(x)=2-2 x$
b. $y=x^{3}+1$ and $y=0$ for $0 \leq x \leq 2$.
c. $f(x)=x^{2}$ and $g(x)=\sqrt{x}$
