\qquad
Spring 2015
Second Midterm
3/11/2015
Time Limit: 2 Hours

This exam contains 11 pages (including this cover page) and 9 problems. Check to see if any pages are missing. Enter all requested information on the top of this page.

The following rules apply:

- You are expected to abide by the University's rules concerning Academic Honesty.
- You may not use your books, notes, or any electronic device including cell phones.
- You must show all of your work. An answer, right or wrong, without the proper justification will receive little to no credit.
- You must complete your work in the space provided. No extra paper will be provided.

Circle your instructor.

- Cabrera
- Cohen
- Groves
- Kobotis
- Lowman
- Shulman

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	15	
8	10	
9	15	
Total:	100	

- Steenbergen

TA Name:

1. (10 points) An olympic diver enters the water causing a circular ripple to form whose radius increases at 6 feet per second. How fast is the area, enclosed by the ripple, increasing 2 seconds after the diver enters the water?
Solution: After 2 seconds, the radius is $r=2(6)=12$ feet. We have $A=\pi r^{2}$ and $\frac{d r}{d t}=6$. Then

$$
\begin{aligned}
\frac{d A}{d t} & =2 \pi r \cdot \frac{d r}{d t} \\
\frac{d A}{d t} & =2 \pi(12)(6)=144 \pi
\end{aligned}
$$

The ripple's area is increasing at 144π square feet per second.
Grading Rubric:
The following parts are graded independently of one another:
1 point - If the student either labelled or used $\frac{d r}{d t}=6$
2 points - If the student determined that the radius was 12 feet
4 points - If the student had the equation $A=\pi r^{2}$ AND differentiated with respect to time t
2 point - If the student evaluated $\frac{d A}{d t}$
1 point - If the student had proper units on the answer
2. (10 points) Differentiate the following function. Do not simplify your answer. $\tan ^{-1}\left(\sqrt{x^{2}-1}\right)$

Solution: Using the chain rule (twice)

$$
\frac{d}{d x}\left(\tan ^{-1}\left(\sqrt{x^{2}-1}\right)\right)=\frac{1}{1+\left(\sqrt{x^{2}-1}\right)^{2}} \cdot \frac{1}{2}\left(x^{2}-1\right)^{-1 / 2} \cdot 2 x
$$

Grading Rubric:

If no attempt was made to use the chain rule, then the student received 0 points.
If the student made an attempt at using the chain rule (note that $f^{\prime}\left(g^{\prime}(x)\right)$ does not count as an attempt at the chain rule):
5 points - If the student had $\frac{1}{1+\left(\sqrt{x^{2}-1}\right)^{2}}$
3 points - If the student had $\frac{1}{2}\left(x^{2}-1\right)^{-1 / 2}$
2 points - If the student had $2 x$
-2 points - For each simple error or algebraic mistake the student made
3. (10 points) If $y=x^{-x}$, find $\frac{d y}{d x}$.

Solution: Taking the natural logarithm, we have $\ln y=-x \ln x$. Using implicit differentiation

$$
\begin{aligned}
\frac{1}{y} \cdot \frac{d y}{d x} & =-\ln x+(-x) \cdot \frac{1}{x} \\
\frac{d y}{d x} & =y(-\ln x-1) \\
\frac{d y}{d x} & =x^{-x}(-\ln x-1)
\end{aligned}
$$

Grading Rubric:

3 points - If the student rewrites the equation as $\ln y=-x \ln x$
6 points - If the student calculates the derivative of $\ln y$ or $-x \ln x$ BUT NOT BOTH
9 points - If the student calculates the derivative of BOTH $\ln y$ and $-x \ln x$
10 points - If the student rewrites the the final answer in terms of only x
OR
2 points - If the student rewrites the equation as $y=e^{\ln \left(x^{-x}\right)}$
5 points - If the student rewrites the equation as $y=e^{-x \ln x}$.
7 points - If the student calculates the derivative of $e^{-x \ln x}$ but has some errors
10 points - If the student calculates the derivative of $e^{-x \ln x}$
4. (10 points) Find the critical points of $f(x)=x^{2 / 3} e^{x}$.

Solution: The domain of f is $(-\infty, \infty)$. Then $f^{\prime}(x)=\frac{2}{3} x^{-1 / 3} e^{x}+x^{2 / 3} e^{x}$. Notice that $f^{\prime}(0)$ does not exist, so $x=0$ is a critical point. The remaining critical points come from where $f^{\prime}(x)=\frac{2}{3} x^{-1 / 3} e^{x}+x^{2 / 3} e^{x}=0$. Multiplying through by $x^{1 / 3}$, we have

$$
\begin{aligned}
\frac{2}{3} e^{x}+x e^{x} & =0 \\
e^{x}\left(\frac{2}{3}+x\right) & =0 \\
x & =-\frac{2}{3} .
\end{aligned}
$$

Therefore the two critical points are $x=0$ and $x=-\frac{2}{3}$.

Grading Rubric:

4 points - If the student found $f^{\prime}(x)$
ONLY IF THE STUDENT GOT $f^{\prime}(x)$ CORRECT CAN S/HE EARN MORE POINTS
7 points - If the student found one of the two critical points but not both
10 points - If the student found both critical points
-2 points - If the student makes a small algebra error
Note: The student did not receive credit for saying $x=0$ is a critical point if they did not also say that it is because $f^{\prime}(0)$ is undefined.
5. (10 points) Find the absolute maximum and absolute minimum of $g(x)=\frac{x}{x^{2}+1}$ on $[0,3]$.

Solution: Since g is continuous on the closed interval [0,3], the absolute extrema occur at either the endpoints of the interval or a critical point inside the interval.

$$
\begin{gathered}
g^{\prime}(x)=\frac{\left(x^{2}+1\right) \cdot 1-x \cdot(2 x)}{\left(x^{2}+1\right)^{2}}=0 \\
x^{2}+1-2 x^{2}=0 \\
1-x^{2}=0 \\
x= \pm 1 .
\end{gathered}
$$

Since $x=-1$ is not in the interval, we exclude it. Therefore the absolute extrema occur at either $x=0, x=3$, or $x=1$:

$$
\begin{aligned}
g(0) & =0 \\
g(3) & =\frac{3}{10} \\
g(1) & =\frac{1}{2}
\end{aligned}
$$

The absolute minimum is 0 and the absolute maximum is $\frac{1}{2}$.

Grading Rubric:

3 points - If the student found $f^{\prime}(x)$
6 points - If the student set $f^{\prime}(x)=0$ and found the critical point
THE REMAINING POINTS CAN ONLY BE GIVEN IF THE STUDENT HAS FOUND THE CORRECT CRITICAL POINT

8 points - If the student evaluated the critical point and endpoints in $g(x)$
10 points - If the student made the correct conclusion about absolute extrema
6. (10 points) If $f(x)=\cos x+3 x$, find $\left(f^{-1}\right)^{\prime}(1)$.

Solution: Since $(0,1)$ is a point on $y=f(x)$, we know $(1,0)$ is a point $y=f^{-1}(x)$. Then $f^{\prime}(x)=-\sin x+3$, so

$$
\left(f^{-1}\right)^{\prime}(1)=\frac{1}{f^{\prime}(0)}=\frac{1}{3} .
$$

Grading Rubric:

0 points - If the student uses the incorrect formula $\left(f^{-1}\right)^{\prime}(1)=\frac{1}{f^{\prime}(1)}$
2 points - If the student attempted to use the correct formula $\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$
4 points - If the students says that $(0,1)$ is a point on $y=f(x)$ or that $(1,0)$ is a point on $y=f^{-1}(x)$
8 points - If the student utilizes the formula $\left(f^{-1}\right)^{\prime}(1)=\frac{1}{f^{\prime}(0)}$ but has a small error
10 points - If the student utilizes the formula $\left(f^{-1}\right)^{\prime}(1)=\frac{1}{f^{\prime}(0)}$ and has the correct derivative
7. (15 points) The picture below is the graph of the derivative of $f(x)$. Answer the questions below the graph.

(a) State the interval(s) where $f(x)$ is increasing. Give a one sentence explanation for your answer.
(b) State the interval(s) where $f(x)$ is concave down. Give a one sentence explanation for your answer.
(c) State the point(s) where $f(x)$ has a local maximum or local minimum and what type of local extrema each is. Give a one sentence explanation for your answer.

Solution: (a) $f(x)$ is increasing on $(-\infty, 0)$ since $f^{\prime}(x)>0$ on this interval.
(b) $f(x)$ is concave down on $(-1,1)$ since this is where $f^{\prime}(x)$ is decreasing.
(c) The only critical point is $x=0$ since this is where $f^{\prime}(x)=0$ and it is a local maximum since $f^{\prime}(x)$ changes from positive to negative.
Grading Rubric:
For parts (a) and (b), the following scale was used:
2 points - If the correct interval was stated
5 points - If the correct interval was stated with proper justification
For part (c), the following scale was used:
2 points - If $x=0$ was stated as a critical point
3 points - If $x=0$ was stated as a critical point and classified
5 points - If $x=0$ was stated as a critical point and classified with proper justification
NOTE: An answer involving an interval such as $(3,0)$ or $(2,0)$ was considered the same as the interval $(-\infty, 0)$. Any values of the function outside of $[-2,2]$ were not considered (either right or wrong).
8. (10 points) Find the slope of the tangent line to $x^{2}+x y-y^{2}=-5$ at the point $(-1,2)$.

Solution: Using implicit differentiation,

$$
\begin{aligned}
2 x+y+x \cdot \frac{d y}{d x}-2 y \cdot \frac{d y}{d x} & =0 \\
2(-1)+2+(-1) \frac{d y}{d x}-2(2) \frac{d y}{d x} & =0 \\
-5 \frac{d y}{d x} & =0 \\
\frac{d y}{d x} & =0
\end{aligned}
$$

Grading Rubric:

This problem will be graded in two parts, independent of one another.
The first part, worth 6 points, is the derivative of the equation with respect to x.
1 point - If the student found the derivative of x^{2}
2 points - If the student found the derivative of $x y$
2 points - If the student found the derivative of y^{2}
1 point - If the student found the derivative of 5
The second part, worth 4 points, is finding $\frac{d y}{d x}$ at $(-1,2)$.
2 points - If the student plugged in $(-1,2)$ and solved for $\frac{d y}{d x}$ but had an arithmetic error
4 points - If the student plugged in $(-1,2)$ and solved for $\frac{d y}{d x}$
NOTE: If the first part of the solution was incorrect, the student could earn at most 2 points on the second part
9. (15 points) For each statement below, in the space provided, explain what the statement means in terms of the graph of $f(x)$ in one sentence.
Solution:
(a) The domain of f is $[0, \infty)$

Explanation: The graph only exists in Quadrants 1 and/or 4.
(b) f is continuous on its domain

Explanation: The graph can be drawn from left to right without lifting one's pencil.
(c) $f^{\prime}(2)$ does not exist

Explanation: There is a cusp or corner at $x=2$.
(d) $f(2)=0$

Explanation: The graph goes through the point $(2,0)$.
(e) $f^{\prime}(x)<0$ on $(0,2)$

Explanation: f is decreasing on $(0,2)$.
(f) $f^{\prime}(x)>0$ on $(2,4)$ and $f^{\prime}(x)>0$ on $(4, \infty)$

Explanation: f is increasing on $(2,4)$ and on $(4, \infty)$.
(g) $f^{\prime}(4)=0$

Explanation: There is a horizontal tangent line at $x=4$.
(h) $f^{\prime \prime}(x)<0$ on (0,2)

Explanation: f is concave down on $(0,2)$.
On the axes provided, sketch a graph of $f(x)$ that satisfies all of the properties above.
Here is one sketch.

Grading Rubric:

Each explanation is worth 1 point.
1 point - If the student has the proper explanation
The following scale was used to grade the graph, out of 7 points:
2 points - If the graph depicts 2 or 3 of properties (c) through (h)
4 points - If the graph depicts 4 or 5 of properties (c) through (h)

7 points - If the graph depicts all of the properties (c) through (h) ON TOP OF THAT, PROPERTIES (a) and (b) WERE THEN GRADED AS:
-2 points - If the domain of the graph is not $[0, \infty)$
-2 points - If the graph is not continuous
-2 points - If the graph is not a function
Note: The student can not receive lower than a 0 on this part of the problem with the deductions

