Math 180	Name (Print):
3/09/2016	NetID:
Time Limit: 90 Minutes	

This exam contains 10 pages (including this cover page) and 10 problems. After starting the exam, check to see if any pages are missing. Enter all requested information on the top of this page.

The following rules apply:

- You may not open this exam until you are instructed to do so.
- You are expected to abide by the University's rules concerning Academic Honesty.
- You may not use your books, notes, calculators, or any electronic device including cell phones. Only pencils/pens allowed.
- You must show all of your work. An answer, right or wrong, without the proper justification will receive little to no credit.
- You must complete your work in the space provided. We will be scanning your answers into our grading system, so any work you do that is out of place, too close to the page border, or on the wrong page will not be graded!

TA Name:

Circle your instructor.

- Martina Bode
- Jenny Ross
- Michael Hull
- Evangelos Kobotis
- Bonnie Saunders

1. (10 points) Find an equation for the tangent line to the graph given by the equation

$$
x^{2}+2 x y-y^{2}=1
$$

at the point $(1,2)$.
2. (12 points) Differentiate the following functions, you do not need to simplify your answers. Note that $y=\sin ^{-1}(x)$ is the inverse function to $\sin (x),-\pi / 2 \leq x \leq \pi / 2$.
(a) (6 points) $f(x)=\sec (\sqrt{x})$
(b) (6 points) $f(x)=\sin ^{-1}(\ln x)$
3. (10 points) Differentiate $f(x)=x^{\sqrt{x}}$.
4. (10 points) The height of a vertically moving object is given by the function:

$$
h(t)=2 t^{3}+3 t^{2}-36 t+100
$$

Here, we measure time in seconds and height in feet.
(a) (4 points) Find a formula for the velocity $v(t)$, and the acceleration $a(t)$ of the moving object.
(b) (5 points) If the object starts moving at $t=0$, find at what point in time its velocity becomes 0 . What is the acceleration of the object at that point in time; provide the correct units with your answer.
(c) (1 point) What does the second derivative test tell you at that point in time that you found in part (b).
5. (12 points) A rectangle in a video game changes dimensions as the game proceeds. When the height is 8 cm , and the width is 6 cm , the rate of change of its height is $3 \mathrm{~cm} / \mathrm{sec}$ and the rate of change of its width is $-2 \mathrm{~cm} / \mathrm{sec}$, find the rate of change of the rectangle's area at this moment.
6. (12 points) Find the absolute maximum and minimum of $f(x)=\left(x^{2}-1\right)^{3}$ on $[0,2]$. Show all your work.
7. (8 points) Determine the interval(s) on which the function $f(x)=x e^{-x}$ is increasing and the interval(s) on which it is decreasing.
8. (8 points) Let $f(x)=\frac{x}{x^{2}+1}, f^{\prime}(x)=\frac{1-x^{2}}{\left(x^{2}+1\right)^{2}}$, and $f^{\prime \prime}(x)=\frac{2 x^{3}-6 x}{\left(x^{2}+1\right)^{3}}$.

Determine the intervals of concavity and the inflection points of $f(x)$.
9. (8 points) The graph of the derivative function $y=g^{\prime}(x)$ on the interval $[-3,3]$ is shown below.

(a) (4 points) On what intervals is g increasing? decreasing? At what value(s) of x does g have a local maximum? local minimum?
(b) (4 points) On what intervals is g concave upward? concave downward? Does g have any points of inflection?
10. (10 points) Suppose that the function $f(x)$ has an unknown formula, but the following properties are known.
(a) Domain $=[0,4]$.
(b) $f(0)=0, f(1)=1, f(2)=2, f(3)=3, f(4)=2$.
(c) $f^{\prime}(x)>0$ for $x<3$, and $f^{\prime}(x)<0$ for $x>3$.
(d) $f^{\prime \prime}(x)>0$ for $0<x<1$ and $x>2$, and $f^{\prime \prime}(x)<0$ for $1<x<2$.

Sketch a possible graph of $y=f(x)$.

