Name: \qquad

Final Exam

Duration: 2 hours
Total: 100 points
The following rules apply:

- You are expected to abide by the University's rules concerning Academic Honesty.
- You may not use your books, notes, or any electronic device including cell phones.
- You must show all of your work. An answer, right or wrong, without the proper justification will receive little to no credit.
- You must complete your work in the space provided.

Check next to your instructor:

Kobotis	
Lukina @ 11am	
Lukina @ 2pm	
Cole	
Levine	
Steenbergen @ noon	
Steenbergen @ 2pm	
Xie	
Shvydkoy	

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total	100	

(10 pts) 1. The square C with vertices at $(0,0),(1,0),(0,1),(1,1)$ is oriented counterclockwise. Compute the circulation of the vector field

$$
F=\left\langle-1+e^{x^{2}}, x^{2} y^{5}+\cos \left(y^{2}\right)\right\rangle
$$

around the square.
(10 pts) 2. Given two vectors in space

$$
\mathbf{u}=\langle 1,-1,0\rangle, \quad \mathbf{v}=\langle 1,0,1\rangle
$$

find the angle between them; compute the area of the parallelogram formed by the vectors.
(10 pts) 3. Find the volume of the region bounded by the cylinder $y=\sin x$ and restricted by $-1 \leq z \leq 1$, $0 \leq x \leq \pi, y \geq 0$.
(10 pts) 4. A surface S is given by equation

$$
x=y^{2}+z^{2}+1
$$

(a) Describe the surface.
(b) Verify that the point $P(3,1,1)$ belongs to the surface, and find an equation of the tangent plane to S at point P.
(c) Find all points on the surface where the tangent plane is parallel to the $y z$-plane.
(10 pts) 5. A rectangular window given by $0 \leq y \leq 1,0 \leq z \leq 2, x=0$, stands in the wind blowing with velocity field $F=\langle-1,1,0\rangle$. Calculate the flux of the wind through the window relative to the incoming direction (negative direction of the x-axis).
(10 pts) 6. Let S be the part of the paraboloid $z=4-x^{2}-y^{2}$ above the plane $z=0$. Find the surface area of S.
(10 pts) 7. Find the absolute maximum and minimum of the function $f(x, y)=1-2 x^{2}-y^{2}$ over the unit disk $x^{2}+y^{2} \leq 1$.
(10 pts) 8. Compute the following double integral

$$
\iint_{R} y d A
$$

where R is the region confined between two parabolas $x=y^{2}, x=2 y^{2}$, and the lines $y=0$, $y=1$.
(10 pts) 9. A force field is given by

$$
F=\langle y \cos (x y), x \cos (x y)-2 y\rangle
$$

Examine whether this field is conservative or not. If it is conservative find a potential function. Compute the work done by the force in moving an object from point $(0,0)$ to point $(\pi / 2,1)$ along a straight line.
(10 pts) 10. A function is given by

$$
h(x, y)=(1+y) \arctan (x) .
$$

(a) Compute the rate of change in the direction of vector $\mathbf{u}=\langle-1,1\rangle$ at the origin.
(b) Determine the direction of the maximum rate of increase at the origin.
(c) Determine the maximal rate of increase itself at the origin.

