First Hour Exam

(20 pts) 1. Consider the three points \(P = (5, 2, -1), Q = (1, 4, 1), R = (1, 2, 3) \) in \(\mathbb{R}^3 \).

 (a) Find an equation for the plane which contains \(P, Q \) and \(R \).

 (b) Find the area of the triangle with vertices at \(P, Q \) and \(R \).

 (c) Find the angle between \(PQ \) and \(PR \).

(20 pts) 2. A particle moves along the space curve \(r(t) = (\cos 2t)i + (3t - 1)j + (\sin 2t)k \).

 (a) Find the velocity, speed, and acceleration of the particle (as functions of \(t \)).

 (b) Find the principal unit normal vector at \(t = 0 \).

(20 pts) 3. Let \(f(x, y, z) = \sqrt{xy} + 2xz + 3yz \).

 (a) Find \(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \text{and} \frac{\partial f}{\partial z} \).

 (b) Let \(x = uv, y = u + 2v, \text{and} z = -v^2 \). Compute \(\frac{\partial f}{\partial u} \) when \(u = 2 \) and \(v = -1 \).

(20 pts) 4. Let \(f(x, y) = \frac{2(x + 1)}{4x^2 + 5(y + 1)^2} \).

 (a) Evaluate \(\lim_{(x,y)\to(0,-1)} f(x, y) \) or show that it doesn’t exist.

 (b) Evaluate \(\lim_{(x,y)\to(0,1)} f(x, y) \) or show that it doesn’t exist.

(20 pts) 5. Find the arc length of the curve \(c(t) = \langle 2t - 1, 2\ln t, 1 - \frac{1}{2}t^2 \rangle \) from \(t = 1 \) to \(t = e \).

Hand in this sheet along with your exam booklet!