First Hour Exam

(20 pts) 1. Do the following computations.
 (a) Compute \(\langle 1, 2, 3 \rangle \cdot \langle -2, 0, 1 \rangle \).
 (b) Compute \(\langle 1, -1, 3 \rangle \times \langle -2, -3, 1 \rangle \).
 (c) Find a normal vector to the plane described by \(7x + 2y - 3z \).
 (d) Determine if the equations \(x - y + 2z = 1 \) and \(-x + y - 2z = 3 \) describe parallel planes, and give a reason.
 (e) If \(P = (4, 2, -3) \) and \(Q = (2, 1, 5) \), express the vector \(\overrightarrow{PQ} \) in terms of the standard unit vectors \(\mathbf{i}, \mathbf{j} \) and \(\mathbf{k} \).

(20 pts) 2. Consider the three points \(P = (2, -1, 3) \), \(Q = (2, 1, -2) \), and \(R = (1, 1, 0) \) in \(\mathbb{R}^3 \).
 (a) Find an equation for the plane which contains \(P, Q \) and \(R \).
 (b) Find the area of the triangle with vertices at \(P, Q \) and \(R \).

(15 pts) 3. Let \(c \) be the curve given by \(c(t) = \langle \cos 2t, 3t - 1, \sin 2t \rangle \).
 (a) Find parametric equations for the tangent line to \(c \) at \(t = \frac{\pi}{4} \).
 (b) Find the length of the curve \(c \) between \(t = -\pi \) and \(t = \pi \).
 (c) Find the curvature of \(c \) at \(t = 0 \).

(15 pts) 4. Find an equation for the tangent plane to the surface \(x^2 + 2y^2 - z^2 = 12 \) at the point \((2, 2, 2) \).

(15 pts) 5. Find the linear function \(L(x, y) \) which gives the best linear approximation to the function \(f(x, y) = x \cos(\pi y) + ye^x \) at the point \((1, 1) \).

(15 pts) 6. Let \(f(x, y) = \frac{x^2}{x^2 + y^2} \). Show that \(\lim_{(x,y) \to (0,0)} f(x, y) \) does not exist.

Hand in this sheet along with your exam booklet!