MATH 210

Sample exam problems for the 2nd hour exam Fall 2009

- 1. Let $f(x,y) = 3x^2 + xy + 2y^2$. Find the partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ at (1,1), and find the best linear approximation of f at (1,1) and use it to estimate f(1,1,1,2).
- 2. Find and classify the critical points of the function $f(x,y) = x^3 3xy + y^3$.
- 3. Sketch the region of integration for the integral $\int_0^4 \int_{\sqrt{y}}^2 \sin(x^3) dx dy$. Compute the integral.
- 4. Find the minimum and maximum of the function f(x, y, z) = x + y z on the ellipsoid

$$R = \left\{ (x, y, z) : \frac{x^2}{4} + \frac{y^2}{9} + z^2 = 1 \right\}.$$

5. Find the tangent plane to the surface:

$$S = \{(x, y, z) : x^2 + y^3 - 2z = 1\}$$

at the point (1, 2, 4).

- 6. Let $F(x, y, z) = 3x^2 + y^2 4z^2$. Find the equation of the tangent plane to the level surface F(x, y, z) = 1 at the point (1, -4, 3).
- 7. Let $f(x,y) = \frac{1}{3}x^3 + y^2 xy$. Find all critical points of f(x,y) and classify each as a local maximum, local minimum, or saddle point.
- 8. Find the maximum and minimum of the function $f(x,y) = x^2 y$ subject to the condition $x^2 + y^2 = 4$.
- 9. Use polar coordinates to find the volume of the region bounded by the paraboloid $z=1-x^2-y^2$ in the first octant $x\geq 0,\,y\geq 0,\,z\geq 0.$
- 10. Find the minimum and the maximum of the function

$$f(x, y, z) = x^2 - y^2 + 2z^2$$

on the surface of the sphere defined by the equation $x^2 + y^2 + z^2 = 1$.

1

11. Using cylindrical coordinates, compute

$$\iiint_W (x^2 + y^2)^{\frac{1}{2}} dV$$

where W is the region within the cylinder $x^2 + y^2 \le 4$ and $0 \le z \le y$.

12. Compute the integral $\iiint_B x^2 dV$, where B is the unit ball

$$B = \{(x, y, z): x^2 + y^2 + z^2 \le 1\}.$$

- 13. Find the volume of the region bounded below and above by the surfaces $z = x^2 + y^2$ and $z = 2 x^2 y^2$.
- 14. Let $f(x,y) = e^{xy}$ and (r,θ) be polar coordinates. Find $\frac{\partial f}{\partial r}$. Express your answer in terms of the variables x and y.
- 15. Compute the average value of the function f(x,y) = 2 + x y on the quarter disk $A = \{(x,y): x \ge 0, y \ge 0, x^2 + y^2 \le 1\}$.
- 16. Compute the integral

$$\iint_D \frac{x}{y+1} \, dA$$

where D is the triangle with vertices (0,0),(1,1),(2,0).

- 17. Let $f(x,y) = x^2 x + y^2$, and let \mathcal{D} be the bounded region defined by the inequalities $x \ge 0$ and $x \le 1 y^2$.
 - (a) Find and classify the critical points of f(x, y).
 - (b) Sketch the region \mathcal{D} .
 - (c) Find the absolute maximum and minimum values of f on the region \mathcal{D} , and list the points where these values occur.
- 18. Consider the function $F(x,y) = x^2 e^{4x-y^2}$. Find the direction (unit vector) in which F has the fastest growth at the point (1,2).
- 19. Let $\vec{\mathbf{r}}(t) = \langle e^{-t}, \cos(t) \rangle$ describe movement of a point in the plane, and let $f(x,y) = x^2y e^{x+y}$. Use the chain rule to compute the derivative of $f(\vec{\mathbf{r}}(t))$ at time t = 0.
- 20. Let the function $f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$ describe the density in the region $A = \{x^2 + y^2 + z^2 \le 1, \sqrt{x^2 + y^2} \le z\}$. Use spherical coordinates to compute its mass.