1. Let $f(x, y) = 3x^2 + xy + 2y^2$. Find the partial derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ at $(1, 1)$, and find the best linear approximation of f at $(1, 1)$ and use it to estimate $f(1.1, 1.2)$.

2. Find and classify the critical points of the function $f(x, y) = x^3 - 3xy + y^3$.

3. Sketch the region of integration for the integral $\int_0^4 \int_{\sqrt[4]{x}}^2 \sin(x^3) \, dx \, dy$. Compute the integral.

4. Find the minimum and maximum of the function $f(x, y, z) = x + y - z$ on the ellipsoid

$$R = \left\{ (x, y, z) : \frac{x^2}{4} + \frac{y^2}{9} + z^2 = 1 \right\}.$$

5. Find the tangent plane to the surface:

$$S = \{(x, y, z) : x^2 + y^3 - 2z = 1\}$$
at the point $(1, 2, 4)$.

6. Let $F(x, y, z) = 3x^2 + y^2 - 4z^2$. Find the equation of the tangent plane to the level surface $F(x, y, z) = 1$ at the point $(1, -4, 3)$.

7. Let $f(x, y) = \frac{1}{3}x^3 + y^2 - xy$. Find all critical points of $f(x, y)$ and classify each as a local maximum, local minimum, or saddle point.

8. Find the maximum and minimum of the function $f(x, y) = x^2 - y$ subject to the condition $x^2 + y^2 = 4$.

9. Use polar coordinates to find the volume of the region bounded by the paraboloid $z = 1 - x^2 - y^2$ in the first octant $x \geq 0$, $y \geq 0$, $z \geq 0$.

10. Find the minimum and the maximum of the function

$$f(x, y, z) = x^2 - y^2 + 2z^2$$
on the surface of the sphere defined by the equation $x^2 + y^2 + z^2 = 1$.

11. Using cylindrical coordinates, compute
\[
\iiint_W (x^2 + y^2)^{\frac{1}{2}} \, dV
\]
where \(W \) is the region within the cylinder \(x^2 + y^2 \leq 4 \) and \(0 \leq z \leq y \).

12. Compute the integral \(\iiint_B x^2 \, dV \), where \(B \) is the unit ball
\[
B = \{(x, y, z) : x^2 + y^2 + z^2 \leq 1\}.
\]

13. Find the volume of the region bounded below and above by the surfaces
\[
z = x^2 + y^2 \quad \text{and} \quad z = 2 - x^2 - y^2.
\]

14. Let \(f(x, y) = e^{xy} \) and let \((r, \theta) \) be polar coordinates. Find \(\frac{\partial f}{\partial r} \). Express your answer in terms of the variables \(x \) and \(y \).

15. Compute the average value of the function \(f(x, y) = 2 + x - y \) on the quarter disk \(A = \{(x, y) : x \geq 0, \ y \geq 0, \ x^2 + y^2 \leq 1\} \).

16. Compute the integral
\[
\int_D \frac{x}{y + 1} \, dA
\]
where \(D \) is the triangle with vertices \((0, 0), (1, 1), (2, 0)\).

17. Let \(f(x, y) = x^2 - x + y^2 \), and let \(D \) be the bounded region defined by the inequalities \(x \geq 0 \) and \(x \leq 1 - y^2 \).

 (a) Find and classify the critical points of \(f(x, y) \).

 (b) Sketch the region \(D \).

 (c) Find the absolute maximum and minimum values of \(f \) on the region \(D \), and list the points where these values occur.

18. Consider the function \(F(x, y) = x^2 e^{4x-y^2} \). Find the direction (unit vector) in which \(F \) has the fastest growth at the point \((1, 2)\).

19. Let \(\vec{r}(t) = (e^{-t}, \cos(t)) \) describe movement of a point in the plane, and let \(f(x, y) = x^2 y - e^{x+y} \). Use the chain rule to compute the derivative of \(f(\vec{r}(t)) \) at time \(t = 0 \).

20. Let the function \(f(x, y, z) = \sqrt{x^2 + y^2 + z^2} \) describe the density in the region \(A = \{x^2 + y^2 + z^2 \leq 1, \ \sqrt{x^2 + y^2} \leq z\} \). Use spherical coordinates to compute its mass.