MATHEMATICS 220: FINAL EXAM
University of Illinois at Chicago
(Abramov, Awanou, Nicholls)
December 11, 2014

Please read the exam carefully and follow all instructions. SHOW ALL OF YOUR
WORK. Please put a box around your final answer.

1. (20 points) Solve the initial value problem

dy 2
o= (+y), ()

2. (20 points) Solve the initial value problem

(2zy +3)dr + (2> —1)dy =0,  y(0) =0.

3. (25 points) A large 100L tank is initially filled with fresh water. At time ¢ =0, a
brine solution begins to enter the tank at the rate of 5 L/min with concentration
of 0.2 kg/L. The well-stirred solution is removed from the tank at the same rate
of 5 L/min. Denote the amount (mass in kg) of salt in the tank as x, and then
find the formula for x(t) for ¢t > 0.

4. (20 points) Find the general solution to the equation
y" + 2y + 2y = e " cos(2t).

Use the Method of Undetermined Coefficients to find a particular solution
for the non-homogeneous equation. (Any other method will receive no
credit.)

5. (25 points) Solve the initial value problem using differential operators

y = —2x+y, y(0) = 0.



. (20 points) Compute the inverse Laplace transform of

S
Fs) = — >
)= 313

. (20 points) Using the Method of Laplace transforms solve the initial value
problem

y"(t) +14y'(t) + 58y(t) = 6(t —8), y(0) =0, y'(0)=0.
(Any other method will receive no credit.)

. (25 points) Find the values of A for which the given problem has a nontrivial
solution. Also determine the corresponding nontrivial solutions.

Yy +Ay=0, 0<xz<1, ¢'(0)=0, y(1)=0.

. (25 points) Consider the function

flx)=2, O0<z<m.

(a) (19 points) Compute the Fourier sine series of this function.

(b) (2 points) To what value does this series converge at x = 0?7 Why?
(c) (2 points) To what value does this series converge at x = 7/2? Why?
(d) (2 points) To what value does this series converge at x = 77 Why?
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List of PDE Formulae

. The solution of the homogeneous heat equation w; = [%u,, with Dirichlet
boundary conditions is:

)= 3 i ()

n=1

. The solution of the homogeneous heat equation u; = [B?ug, with Neumann
boundary conditions is:

u(r,t) = % + Z ane” PP/t cog (%x) :

n=1

. The inhomogeneous heat equation has a solution of the form w(z,t) = v(z) +
w(z,t), where v is the steady—state solution and w solves a homogeneous heat
equation.

. The solution of the homogeneous wave equation uy = o?u,, with Dirichlet
boundary conditions is:

u(z,t) = i {an cos (&%t) + b, sin <an%t) } sin (%x) :

n=1



