MATHEMATICS 220: FINAL EXAM

University of Illinois at Chicago (Abramov, Awanou, Nicholls) December 11, 2014

Please read the exam carefully and follow all instructions. SHOW ALL OF YOUR WORK. Please put a box around your final answer.

1. (20 points) Solve the initial value problem

$$\frac{dy}{dx} = x^2(1+y), \qquad y(0) = 1.$$

2. (20 points) Solve the initial value problem

$$(2xy+3) dx + (x^2-1) dy = 0,$$
 $y(0) = 0.$

- 3. (25 points) A large 100L tank is initially filled with fresh water. At time t=0, a brine solution begins to enter the tank at the rate of 5 L/min with concentration of 0.2 kg/L. The well-stirred solution is removed from the tank at the same rate of 5 L/min. Denote the amount (mass in kg) of salt in the tank as x, and then find the formula for x(t) for $t \ge 0$.
- 4. (20 points) Find the general solution to the equation

$$y'' + 2y' + 2y = e^{-t}\cos(2t).$$

Use the **Method of Undetermined Coefficients** to find a particular solution for the non-homogeneous equation. (Any other method will receive no credit.)

5. (25 points) Solve the initial value problem using differential operators

$$x' = 4x + y, x(0) = 1$$

$$y' = -2x + y,$$
 $y(0) = 0.$

6. (20 points) Compute the inverse Laplace transform of

$$F(s) = \frac{s}{s^2 - 4s + 5}.$$

7. (20 points) Using the **Method of Laplace transforms** solve the initial value problem

$$y''(t) + 14y'(t) + 58y(t) = \delta(t - 8), \quad y(0) = 0, \quad y'(0) = 0.$$

(Any other method will receive no credit.)

8. (25 points) Find the values of λ for which the given problem has a nontrivial solution. Also determine the corresponding nontrivial solutions.

$$y'' + \lambda y = 0$$
, $0 < x < 1$, $y'(0) = 0$, $y(1) = 0$.

9. (25 points) Consider the function

$$f(x) = 2, \quad 0 < x < \pi.$$

- (a) (19 points) Compute the **Fourier sine series** of this function.
- (b) (2 points) To what value does this series converge at x = 0? Why?
- (c) (2 points) To what value does this series converge at $x = \pi/2$? Why?
- (d) (2 points) To what value does this series converge at $x = \pi$? Why?

List of Laplace Transforms

1.
$$\mathcal{L}\{1\} = \frac{1}{s}, \quad s > 0$$

2.
$$\mathcal{L}\left\{e^{at}\right\} = \frac{1}{s-a}, \quad s>a$$

3.
$$\mathcal{L}\{t^n\} = \frac{n!}{s^{n+1}}, \quad s > 0$$

4.
$$\mathcal{L}\{\sin(bt)\} = \frac{b}{s^2 + b^2}, \quad s > 0$$

5.
$$\mathcal{L}\{\cos(bt)\} = \frac{s}{s^2 + b^2}, \quad s > 0$$

6.
$$\mathcal{L}\left\{e^{at}t^{n}\right\} = \frac{n!}{(s-a)^{n+1}}, \quad s > a$$

7.
$$\mathcal{L}\left\{e^{at}\sin(bt)\right\} = \frac{b}{(s-a)^2 + b^2}, \quad s > a$$

8.
$$\mathcal{L}\left\{e^{at}\cos(bt)\right\} = \frac{s-a}{(s-a)^2 + b^2}, \quad s > a$$

9.
$$\mathcal{L}\left\{e^{at}f(t)\right\}(s) = \mathcal{L}\left\{f\right\}(s-a)$$

10.
$$\mathcal{L}\{f'\}(s) = s\mathcal{L}\{f\}(s) - f(0)$$

11.
$$\mathcal{L}\left\{f''\right\}(s) = s^2 \mathcal{L}\left\{f\right\}(s) - s f(0) - f'(0)$$

12.
$$\mathcal{L}\left\{f^{(n)}\right\}(s) = s^{n}\mathcal{L}\left\{f\right\}(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$$

13.
$$\mathcal{L}\{t^n f(t)\}(s) = (-1)^n \frac{d^n}{ds^n} \mathcal{L}\{f\}(s)$$

14.
$$\mathcal{L}\{f(t-a)u(t-a)\}(s) = e^{-as}F(s)$$

15.
$$\mathcal{L}\{u(t-a)\}(s) = \frac{e^{-as}}{s}$$

16.
$$\mathcal{L}\left\{g(t)u(t-a)\right\}(s) = e^{-as}\mathcal{L}\left\{g(t+a)\right\}(s)$$

17. If f has period T then

$$\mathcal{L}\{f\}(s) = \frac{F_T(s)}{1 - e^{-sT}} = \frac{\int_0^T e^{-st} f(t) dt}{1 - e^{-sT}}$$

18.
$$\mathcal{L}\{\delta(t-a)\}(s) = e^{-as}$$

List of PDE Formulae

1. The solution of the homogeneous heat equation $u_t = \beta^2 u_{xx}$ with Dirichlet boundary conditions is:

$$u(x,t) = \sum_{n=1}^{\infty} b_n e^{-(\beta n\pi/L)^2 t} \sin\left(\frac{n\pi}{L}x\right).$$

2. The solution of the homogeneous heat equation $u_t = \beta^2 u_{xx}$ with Neumann boundary conditions is:

$$u(x,t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n e^{-(\beta n\pi/L)^2 t} \cos\left(\frac{n\pi}{L}x\right).$$

- 3. The inhomogeneous heat equation has a solution of the form u(x,t) = v(x) + w(x,t), where v is the steady-state solution and w solves a homogeneous heat equation.
- 4. The solution of the homogeneous wave equation $u_{tt} = \alpha^2 u_{xx}$ with Dirichlet boundary conditions is:

$$u(x,t) = \sum_{n=1}^{\infty} \left\{ a_n \cos \left(\alpha \frac{n\pi}{L} t \right) + b_n \sin \left(\alpha \frac{n\pi}{L} t \right) \right\} \sin \left(\frac{n\pi}{L} x \right).$$