MATHEMATICS 220: EXAM II University of Illinois at Chicago (Professor Nicholls) April 1, 2011

Please read the exam carefully and follow all instructions. SHOW ALL OF YOUR WORK. Please put a box around your final answer.

1. (20 points) Determine the form of a particular solution for the differential equation. Do not evaluate coefficients.

$$
y^{\prime \prime}(t)+4 y^{\prime}(t)+13 y(t)=-2 t^{4} e^{-2 t} \cos (3 t) .
$$

2. (20 points) Consider the system of first order ODEs

$$
\begin{aligned}
x^{\prime}(t) & =4 y(t) \\
y^{\prime}(t) & =-4 x(t)
\end{aligned}
$$

(a) (12 points) Solve the phase plane equation for this system.
(b) (8 points) Sketch by hand several representative trajectories (with their flow arrows).
3. (20 points) Find the general solution of

$$
t^{2} y^{\prime \prime}(t)-t y^{\prime}(t)+17 y(t)=0 .
$$

4. (20 points) Find the Laplace transform of

$$
f(t)=t e^{3 t} \sin (4 t)+3 t^{2} e^{-t}
$$

5. (20 points) A 3 kg mass is attached to a spring hanging from the ceiling, thereby causing the spring to stretch 98 cm upon coming to rest at equilibrium. At time $t=0$ the mass is displaced 1 m below the equilibrium position and released. At this same instant, an external force $F(t)=25.5 \cos (t) \mathrm{N}$ is applied to the system. The damping constant for the system is $6 \mathrm{~N}-\mathrm{sec} / \mathrm{m}$.
(a) (5 points) Based upon the rest position at equilibrium find the spring constant k.
(b) (5 points) Find the homogeneous solution.
(c) (5 points) Find a particular solution.
(d) (5 points) Using the initial conditions find the equation of motion for the mass.

List of Laplace Transforms

1. $\mathcal{L}\{1\}=\frac{1}{s}, \quad s>0$
2. $\mathcal{L}\left\{e^{a t}\right\}=\frac{1}{s-a}, \quad s>a$
3. $\mathcal{L}\left\{t^{n}\right\}=\frac{n!}{s^{n+1}}, \quad s>0$
4. $\mathcal{L}\{\sin (b t)\}=\frac{b}{s^{2}+b^{2}}, \quad s>0$
5. $\mathcal{L}\{\cos (b t)\}=\frac{s}{s^{2}+b^{2}}, \quad s>0$
6. $\mathcal{L}\left\{e^{a t} t^{n}\right\}=\frac{n!}{(s-a)^{n+1}}, \quad s>a$
7. $\mathcal{L}\left\{e^{a t} \sin (b t)\right\}=\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$
8. $\mathcal{L}\left\{e^{a t} \cos (b t)\right\}=\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$
9. $\mathcal{L}\{f+g\}=\mathcal{L}\{f\}+\mathcal{L}\{g\}$
10. $\mathcal{L}\{c f\}=c \mathcal{L}\{f\}$
11. $\mathcal{L}\left\{e^{a t} f(t)\right\}(s)=\mathcal{L}\{f\}(s-a)$
12. $\mathcal{L}\left\{f^{\prime}\right\}(s)=s \mathcal{L}\{f\}(s)-f(0)$
13. $\mathcal{L}\left\{f^{\prime \prime}\right\}(s)=s^{2} \mathcal{L}\{f\}(s)-s f(0)-f^{\prime}(0)$
14. $\mathcal{L}\left\{f^{(n)}\right\}(s)=s^{n} \mathcal{L}\{f\}(s)-s^{n-1} f(0)-\ldots-f^{(n-1)}(0)$
15. $\mathcal{L}\left\{t^{n} f(t)\right\}(s)=(-1)^{n} \frac{d^{n}}{d s^{n}} \mathcal{L}\{f\}(s)$
16. $\mathcal{L}\{f(t-a) u(t-a)\}(s)=e^{-a s} F(s)$
17. $\mathcal{L}\{u(t-a)\}(s)=\frac{e^{-a s}}{s}$
18. $\mathcal{L}\{g(t) u(t-a)\}(s)=e^{-a s} \mathcal{L}\{g(t+a)\}(s)$
19. If f has period T then

$$
\mathcal{L}\{f\}(s)=\frac{F_{T}(s)}{1-e^{-s T}}=\frac{\int_{0}^{T} e^{-s t} f(t) d t}{1-e^{-s T}}
$$

20. $\mathcal{L}\{\delta(t-a)\}(s)=e^{-a s}$
