Math 310 Midterm 2 - 17 March 2010

NO WORK = NO CREDIT. NO CALCULATOR.

Please print your name and UIN, and sign the following academic honesty disclosure:

I affirm that I have never given nor received aid on this examination. I understand that cheating is a violation of the student code. Cheating will be a reason for a grade of F in the course and referral to proper officials for possible further disciplinary action.

<table>
<thead>
<tr>
<th>Name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>UIN:</td>
</tr>
<tr>
<td>Signature:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>#</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/20</td>
</tr>
<tr>
<td>2</td>
<td>/50</td>
</tr>
<tr>
<td>3</td>
<td>/10</td>
</tr>
<tr>
<td>4</td>
<td>/20</td>
</tr>
<tr>
<td>T</td>
<td>/100</td>
</tr>
</tbody>
</table>
1. (20 pts) Consider the set $S = \mathbb{R}$ consisting of all real numbers. On the set S, consider the operations \oplus, \otimes defined as:

\[u \oplus v = \max(u, v) \]
\[k \otimes u = ku \]

(a) Determine whether vector addition is commutative; i.e. $u \oplus v = v \oplus u$ for all $u, v \in S$.
(b) Determine whether or not S has a zero element $\mathbf{0}$ such that $u \oplus \mathbf{0} = u$ for all $u \in S$.

2. (50 pts) Consider the matrix A, with its reduced row echelon form U, given below.

\[
A = \begin{pmatrix}
2 & -4 & 3 & -1 & 3 & 1 \\
3 & -6 & 3 & 3 & 0 & -3 \\
-5 & 10 & -3 & -11 & 6 & 11 \\
3 & -6 & 3 & 3 & -3 & 3
\end{pmatrix}
\quad \xrightarrow{\text{RREF}} U = \begin{pmatrix}
1 & -2 & 0 & 4 & 0 & -10 \\
0 & 0 & 1 & -3 & 0 & 9 \\
0 & 0 & 0 & 0 & 1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

(a) Find a basis for the rowspace of A.
(b) Find a basis for the nullspace of A.
(c) Are the columns of A linearly independent? If not, indicate any dependency relations amongst them.
(d) Do the columns of A span \mathbb{R}^4? Explain.
(e) What is the dimension of $R(A)$? Explain

3. (10 pts) Find S^\perp, the orthogonal complement of S:

\[S = \text{Span} \left(\begin{pmatrix} 1 \\ 2 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} -2 \\ -4 \\ 2 \\ 4 \end{pmatrix} \right) \]

4. (20 pts) Determine whether each of the following sets are subspaces of $\mathbb{R}^{2 \times 2}$:

(a) The set S_1 of all triangular 2×2 matrices.
(b) The set S_2 of all symmetric 2×2 matrices.