Math 310 Midterm 2 - 17 March 2010

NO WORK = NO CREDIT. NO CALCULATOR.

Please print your name and UIN, and sign the following academic honesty disclosure:

I affirm that I have never given nor received aid on this examination. I understand that cheating is a violation of the student code. Cheating will be a reason for a grade of F in the course and referral to proper officials for possible further disciplinary action.

Name:					
UIN:					
Signature:					

#	Score
1	/20
2	/50
3	/10
4	/20
Т	/100

1. (20 pts) Consider the set $S = \mathbb{R}$ consisting of all real numbers. On the set S, consider the operations \oplus, \otimes defined as:

$$\mathbf{u} \oplus \mathbf{v} = max(u, v)$$
$$k \otimes \mathbf{u} = ku$$

- (a) Determine whether vector addition is commutative; i.e. $\mathbf{u} \oplus \mathbf{v} = \mathbf{v} \oplus \mathbf{u}$ for all $\mathbf{u}, \mathbf{v} \in S$.
- (b) Determine whether or not S has a zero element $\mathbf{0}$ such that $\mathbf{u} \oplus \mathbf{0} = \mathbf{u}$ for all $\mathbf{u} \in S$.
- 2. (50 pts) Consider the matrix A, with its reduced row echelon form U, given below.

$$A = \begin{pmatrix} 2 & -4 & 3 & -1 & 3 & 1 \\ 3 & -6 & 3 & 3 & 0 & -3 \\ -5 & 10 & -3 & -11 & 6 & 11 \\ 3 & -6 & 3 & 3 & -3 & 3 \end{pmatrix} \xrightarrow{\text{RREF}} U = \begin{pmatrix} 1 & -2 & 0 & 4 & 0 & -10 \\ 0 & 0 & 1 & -3 & 0 & 9 \\ 0 & 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- (a) Find a basis for the rowspace of A.
- (b) Find a basis for the nullspace of A.
- (c) Are the columns of A linearly independent? If not, indicate any dependency relations amongst them.
- (d) Do the columns of A span \mathbb{R}^4 ? Explain.
- (e) What is the dimension of R(A)? Explain
- 3. (10 pts) Find S^{\perp} , the orthogonal complement of S:

$$S = \operatorname{Span}\left(\begin{pmatrix} 1\\2\\0\\-1 \end{pmatrix}, \begin{pmatrix} -2\\-4\\2\\4 \end{pmatrix} \right)$$

- 4. (20 pts) Determine whether each of the following sets are subspaces of $\mathbb{R}^{2\times 2}$:
 - (a) The set S_1 of all triangular 2×2 matrices.
 - (b) The set S_2 of all symmetric 2×2 matrices.