
MATH 180 Exam 2
October 30, 2018

Directions. Fill in each of the lines below. Then read the directions that follow before beginning the exam.
YOU MAY NOT OPEN THE EXAM UNTIL TOLD TO DO SO BY YOUR EXAM PROCTOR. This
exam contains 8 pages (including this cover page) and 9 problems. After starting the exam, check to see
if any pages are missing. Enter all requested information on this page. You are expected to abide by the
University’s rules concerning Academic Honesty.

TA Name:

The following rules apply:

• You may not use your books, notes, calculators, or any electronic device including cell phones. Only
pencils/pens allowed.

• You must show all of your work. An answer, right or wrong, without the proper justification will
receive little to no credit.

• You must complete your work in the space provided. We will be scanning your answers into our
grading system, so any work you do that is out of place, too close to the page border, or on the
wrong page will not be graded!

Circle your instructor.

• Martina Bode

• Mercer (Tabes) Bridges

• Nathan Jones

• Matthew Lee

• John Steenbergen



DO NOT WRITE ABOVE THIS LINE

1. (10 points) Find an equation of the line tangent to the curve x2 + xy − y3 = 7 at (3, 2).
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DO NOT WRITE ABOVE THIS LINE

2. (22 points) Differentiate the following functions, use logarithmic differentiation if needed. You do not
need to simplify your answers.

(a) (6 points) f(x) = ln (x8 + x4 + 5)

(b) (6 points) g(x) = arctan(x2 − 4)

(c) (10 points) h(x) = (x2 + 1)3x
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DO NOT WRITE ABOVE THIS LINE

3. (12 points) Two boats leave a port at the same time. Boat A travels west at 16 mph, and boat B
travels south at 12 mph.

(a) (4 points) After half an hour, how far is each boat from the port?

(b) (8 points) At what rate is the distance between the boats changing half an hour after they leave
the port? Show all your work!
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DO NOT WRITE ABOVE THIS LINE

4. (10 points) Assume that the derivative of g(x) is given by g′(x) = (x + 3)(x2 + 1)ex.

On what interval(s) is g increasing? decreasing? At what value(s) of x does g have a local maximum?
local minimum?

5. (12 points) Find the absolute maximum and minimum values of the function f(x) = 24x4 − 16x3 on
the interval [0, 1]. For which x-values do they occur?
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DO NOT WRITE ABOVE THIS LINE

6. (4 points) Consider the function f(x) = 1 − |x| on [−1, 1], then circle the statement that is correct.
Note that only one of the statements is correct.

(a) Since f(−1) = f(1), we can apply Rolle’s Theorem, and thus there is a c in (−1, 1) with a
horizontal tangent line at x = c.

(b) Since f is continuous on [−1, 1], by the Mean Value Theorem there is a c in (−1, 1) with:

f ′(c) =
f(1)− f(−1)

1− (−1)

(c) The conditions of the Mean Value Theorem are not satisfied since f is not differentiable at x = 0.
Also the derivative is either 1 or -1, but never 0, thus the Mean Value Theorem does not apply
to the interval [−1, 1].

(d) The conditions of the Mean Value Theorem are not satisfied since f is not differentiable at x = 0
but there is a c in (−1, 1) with:

f ′(c) =
f(1)− f(−1)

1− (−1)

7. (12 points) Let f(x) = x4− 2x3. On what intervals is f concave up? concave down? At what value(s)
of x does f have a point of inflection.
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DO NOT WRITE ABOVE THIS LINE

8. (6 points) Sketch a graph of a function satisfying the following conditions:

f is defined and continuous on the closed interval [1, 3], while f ′ is only defined on [1, 2) and (2, 3].
The absolute maximum is at x = 3, and the absolute minimum is at x = 2.
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DO NOT WRITE ABOVE THIS LINE

9. (12 points) A manufacturer needs to make a cylindrical can with an open top that will hold 2 liters
of liquid. Determine the radius of the can that will minimize the amount of material used in its
construction. Show all your work (this includes finding a domain for your optimization function), and
make sure to justify your answer.
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