MATH 180 Exam 2 March 14, 2017

Directions. Fill in each of the lines below. Circle your instructor's name and write your TA's name. Then read the directions that follow before beginning the exam. YOU MAY NOT OPEN THE EXAM UNTIL TOLD TO DO SO BY YOUR INSTRUCTOR. Good luck!

Print Name: \qquad

University Email: \qquad

UIN: \qquad

Circle your instructor's name:
Shulman
Steenbergen
Thulin
Zhang

TA's Name: \qquad

- VERY IMPORTANT!!! CHECK THAT THE NUMBER AT THE TOP OF EACH PAGE OF YOUR EXAM IS THE SAME. IT IS THE NUMBER PRECEDED BY A POUND (\#) SIGN. IF THEY ARE NOT ALL THE SAME, NOTIFY YOUR INSTRUCTOR OR TA RIGHT AWAY.
- All of your work must fit within the boxes on each page for each question. Nothing outside of the box will be graded! If you write outside of the box, there is a good chance that your exam will not be read and therefore not graded.
- A solution for one problem may not go on another page.
- Make clear to the grader what your final answer is.
- Have your student ID ready to be checked when submitting your exam.

1. (10 points) Find the following derivatives. DO NOT SIMPLIFY YOUR ANSWERS.
(a) $\frac{d}{d x}\left(\sin ^{-1}(2 x)\right)$
(b) $\frac{d}{d x}\left(x^{\sqrt{x}}\right)$ [this is x to the \sqrt{x} power]
2. (10 points) Find an equation of the line tangent to the graph of $y^{2}+(y-x)^{3}=5$ at $(1,2)$.
3. (12 points) Consider the function $f(x)=4 x+\frac{1}{\sqrt{x}}$.
(a) State the domain of f.
(b) Find the absolute maximum and absolute minimum of f, or explain why one or both do not exist. Write your answers in the box below.

Absolute Maximum: \qquad Absolute Minimum: \qquad
4. (10 points) Find the point (x, y) on the graph of $y=\sqrt{2 x}$ nearest the point $(4,0)$.
5. (10 points) Oil spills from a ruptured tanker and spreads in a circle whose area increases at a constant rate of 8 square miles per hour.
(a) What is the size of the radius when the area is 4 square miles?
(b) How fast is the radius increasing when the area of the spill is 4 square miles? Make sure you include your units.
6. (12 points) Consider the function $f(x)=\ln x$.
(a) Find the linear approximation of $f(x)$ at $x=1$.
(b) Using your answer in part (a), estimate $\ln (2)$.
(c) Determine whether the approximation in part (b) is an overestimate or underestimate to the actual value. Explain your answer.
7. (16 points) Consider the function $f(x)=x^{4}-4 x^{3}$.
(a) In the spaces provided below write the intervals on which the function is increasing, decreasing, concave up, and concave down.

Increasing: \qquad Decreasing: \qquad

Concave Up: \qquad Concave Down: \qquad
(b) On the axes provided sketch a graph of f that reflects your answers in parts (a). Your graph should also label any x - or y-intercepts.

8. (10 points) Below is a graph of $f^{\prime}(x)$, the DERIVATIVE of some function $f(x)$.

(a) State all of the critical points of f. For each critical point, classify it as a local minimum, local maximum, or neither.
(b) On which interval(s) is f concave down? Explain your answer.

DO NOT WRITE ABOVE THIS LINE!!

9. (10 points) For each statement below, CLEARLY either circle "T" for TRUE or "F" for FALSE (if it is not clear which one you chose, it will be marked wrong). You do not need to justify your answer.
(a) T or F : If $f(x)$ is continuous on a closed interval $[a, b]$, then $f(x)$ must have an absolute maximum and an absolute minimum on $[a, b]$.
(b) T or F: If $f^{\prime}(c)=0$, then f has a minimum or maximum at $x=c$.
(c) T or F: If $f(x)=x^{3}$, then f has an inflection point at $x=0$.
(d) T or F: If $f^{\prime \prime}(c)=0$, then $f^{\prime}(c)=0$.
(e) T or F: If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$, then f has a local maximum at $x=c$.

THIS PAGE WAS LEFT BLANK INTENTIONALLY. YOU CAN USE IT FOR SCRATCH PAPER, BUT NOTHING ON THIS PAGE WILL BE GRADED.

