\qquad

Final
Duration: 2 hours
Total: 100 points (to be rescaled to a max of 30% of your total score for the course)
The following rules apply:

- You are expected to abide by the University's rules concerning Academic Honesty.
- You may not use your books, notes, or any electronic device including cell phones.
- You must show all of your work. An answer, right or wrong, without the proper justification will receive little to no credit.
- You must complete your work in the space provided.

Check next to your instructor:

Kobotis	
Slutskyy	
Dai	
Xie @ 11am	
Xie @ noon	
Heard	
Steenbergen @ noon	
Steenbergen @ 1pm	
Steenbergen @ 2pm	
Woolf	
Cheskidov	
Shvydkoy	

Problem	Points	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
Total	100	

(10 pts) 1. Determine whether the following pairs of vectors are parallel, orthogonal, or neither:
(a) $\mathbf{u}=\langle 2,1,-1\rangle, \mathbf{v}=\langle-4,-2,2\rangle$
(b) $\mathbf{u}=\langle 3,-5\rangle, \mathbf{v}=\langle 1,3 / 5\rangle$
(c) $\mathbf{u}=\langle 2,0,0\rangle, \mathbf{v}=\langle 1,0,1\rangle$.
(10 pts) 2. An object is thrown horizontally 2 meters above the ground with a speed of $3 \mathrm{~m} / \mathrm{s}$. Assuming the gravitational acceleration g is equal to $9 \mathrm{~m} / \mathrm{s}^{2}$, find the total time of flight of the object, and the horizontal distance traveled (range).
(10 pts) 3. A surface S is given by equation

$$
z^{2}+x y=1
$$

(a) Verify that S contains point $P(1,0,1)$.
(b) Find an equation of the tangent plane to S at point P.
(c) Find an equation of the line passing through the point P orthogonal to the surface.
(10 pts) 4. Find and classify all critical points of the function $f(x, y)=x^{4}+2 y^{2}-4 x y$.
(10 pts) 5. The double integral in this problem can only be evaluated by reversing the order of integration. Sketch the underlying region of integration, reverse the order, and evaluate the obtained integral:

$$
\int_{0}^{1} \int_{\sqrt{x}}^{1} \frac{10 x}{y^{5}+3} d y d x
$$

(10 pts) 6. Find the volume of the island bounded above by the graph of $z=e^{-x^{2}-y^{2}}-e^{-4}$ and below by the plane $z=0$.

(10 pts) 7. The rectangle C with vertices at $(-1,0),(-1,1),(1,1),(1,0)$ is oriented counterclockwise. Compute the circulation of the vector field

$$
F=\left\langle\cos \left(x^{2}\right)-x y, \sin \left(y^{2}\right)+y^{2}\right\rangle
$$

around the rectangle.
(10 pts) 8. Compute the surface integral of function $h(x, y, z)=z^{2}$ over the northern hemisphere $x^{2}+$ $y^{2}+z^{2}=1, z \geq 0$.
(10 pts) 9. Find a potential of the force field

$$
F=\langle y z, x z, x y+z\rangle
$$

Using the found potential compute the work done by the force F when moving an object from point $(1,1,2)$ to $(0,0,0)$.
(10 pts) 10. The roof of a railroad station is given by the graph of the function $z=1-y^{2}$, above the $x y-$ plane and $0 \leq x \leq 3$. It gets bombarded by a storm of hail with velocity field $F=\left\langle 0, \frac{1}{10},-1\right\rangle$. Compute the downward flux of the hail through the roof.

