DO NOT WRITE ABOVE THIS LINE!!		
MATH 210 Exam 2 October 31, 2019		
Directions. Fill in each of the lines below. Then read the directions that follow before beginning the exam. YOU MAY NOT OPEN THE EXAM UNTIL TOLD TO DO SO BY YOUR INSTRUCTOR.		
• All of your work must fit within the boxes. Nothing outside of the box will be graded!		
Name (print)		
netid UIN		
• A solution for one problem may not go on another page.		
• Show all your work. Unjustified answers are not correct. Make clear what your final answer is.		
• Have your student ID ready to be checked when submitting your exam.		
Check next to your instructor's name (and lecture time, if applicable):		

Abramov 11AM	Sparber 2PM	Einstein 1PM
Sparber 1PM	Kobotis 8AM	Lear 10AM
Hamdan 4PM	Dai 11AM	Pourarian 1PM
Greenblatt 12PM	Kashcheyeva 3PM	Chow 10AM
Pourarian 3PM	Einstein 2PM	Whyte 12PM
Shulman 9AM	Lear 9AM	Switala 2PM
Michelen 2PM	Datta 1PM	Hamdan 5PM
Chu 11AM	Switala 9AM	Protsak 10AM
Datta 2PM		

- 1. (15 pt) Consider the function $f(x, y) = \ln(2x + y^2 2)$.
- a. Find $D_{\langle \frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}} \rangle} f(1, -1)$.
- b. Compute the unit vector that gives the direction of fastest increase at the point (1, -1).
- c. Find the rate of change in the direction of fastest increase at the point (1, -1).

2. (15 pt) Consider the surface with equation:

$$x^3 + 2y^2 - z^4 + 7 = 0$$

a. Find a function f(x, y, z) so that the above surface is a level surface for the function f.

b. Find a non-zero vector perpendicular (normal) to the given surface at the point (1, 2, -2).

c. Find the equation of the tangent plane to the given surface at the point (1, 2, -2).

3. (10 pt) Find and classify the critical points of $f(x, y) = x^3 - 3xy + y^3$ as to whether each one of them is a local minimum, a local maximum or a saddle point.

Write solution only inside the box

4. (10 pt) Use the method of Lagrange multipliers in order to find the minimum and the maximum of the function f(x, y) = x - 3y on the circle $x^2 + y^2 = 4$.

5. (10 pt) Compute the double integral:

 $\iint_{[0,1]\times[1,e]} 3x^2 + 2x \ln y \, dA$

Write solution only inside the box

6. (15 pt) Consider the iterated integral
$$\int_0^1 \int_{\sqrt{y}}^1 e^{x^3} dx dy$$
.

a. Sketch the region of integration.

- b. Change the order of integration with the appropriate adjustments of the limits of integration.
- c. Compute the resulting integral.

7. (10 pt) Compute the double integral $\iint_D \sqrt{x^2 + y^2} dA$ where D is the part of the unit disc that lies in the first quadrant.

Name: _____

8. (15 pt) Compute the integral:

 $\int_0^1 \int_0^{1-x} \int_0^{1-x-y} 1 \, dz \, dy \, dx$