MATH 210 Exam 2

October 29, 2015

Directions. Fill in each of the lines below. Then read the directions that follow before beginning the exam. YOU MAY NOT OPEN THE EXAM UNTIL TOLD TO DO SO BY YOUR INSTRUCTOR.

Name: \qquad
UIN: \qquad
University Email: \qquad
Check next to your instructor's name:

Lukina	11 am	
Lukina	1 pm	
Kobotis	8 am	
Greenblatt	10 am	
Greenblatt	1 pm	
Goldbring	11 am	
Hong	10 am	
Hong	12 pm	
Dumas	12 pm	
Dai	2 pm	
Heard	9 am	
Wang	2 pm	
Torres	9 am	

- All of your work must fit within the boxes on each page for each question. Nothing outside of the box will be graded! If you write outside of the box, there is a good chance that your exam will not be read and therefore not graded.
- A solution for one problem may not go on another page.
- Show all your work. Unjustified answers are not correct. Make clear to the grader what your final answer is.
- Have your student ID ready to be checked when submitting your exam.

1. (15pt) Consider the function

$$
f(x, y)=\sin (2 x-2 y) .
$$

(a) Find the gradient of the function.
(b) Compute the directional derivative of the function at the point $P\left(\frac{\pi}{2}, \frac{\pi}{6}\right)$ in the direction of the vector $\vec{u}=\left\langle\frac{\sqrt{3}}{2},-\frac{1}{2}\right\rangle$.
(c) Find the unit vector in the direction of the steepest ascent at $P\left(\frac{\pi}{2}, \frac{\pi}{6}\right)$.
2. (10pt) Find the equation of the tangent plane to the surface

$$
2 x y+z e^{y}=0
$$

at the point $(e, 1,-2)$.
3. (10pt) Use the linear approximation to the function

$$
f(x, y)=x^{3}-2 y^{2}
$$

at $(1,1)$ to estimate $f(1.05,0.9)$.
4. $(20 \mathrm{pt})$ Consider the function

$$
f(x, y)=x^{3}+3 x y+y^{3}
$$

(a) Find the critical points of the function.
(b) Use the Second Derivative Test to classify each critical point as a local maximum, local minimum, or a saddle point.
5. (10 pt) For the double integral

$$
\int_{0}^{1} \int_{\sqrt{x}}^{1} \sqrt{2+y^{3}} d y d x
$$

(a) Sketch the region of integration.
(b) Change the order of integration.
(c) Evaluate the integral.
6. ($\mathbf{1 5} \mathbf{p t}$) For the function

$$
f(x, y)=x^{2}+3 y^{2}-y
$$

subject to the constraint

$$
x^{2}+2 y^{2}=2
$$

use the method of Lagrange multipliers to find the maximum and the minimum values of the function, and all points where these values are achieved.
7. (13 pt) Consider the integral

$$
\iint_{R}(x+y) d A
$$

where R is the region in the first quadrant bounded by the parabola $y=1-x^{2}$ and by the coordinate axes.
(a) Sketch the region R.
(b) Evaluate the integral.
8. ($7 \mathbf{p t}$) Find the volume of the solid bounded from above by the paraboloid $z=x^{2}+y^{2}$, from below by the $x y$-plane, and on the sides by the cylinder $x^{2}+y^{2}=4$.

