1. $(15 \mathrm{pt})$ Consider the function

$$
f(x, y)=3 x^{2}+2 x y-2 .
$$

(a) Find the tangent plane to the graph of $f(x, y)$ at $(1,2,5)$.
(b) Use linear approximation and your answer to part a) to estimate $f(1.2,2.1)$.
a)

$$
\begin{aligned}
& f_{x}=6 x+2 y \quad f_{y}=2 x \\
& f_{x}(1,2)=6 \cdot 1+2 \cdot 2=10 \\
& f_{y}(1,2)=2 \cdot 1=2 \\
& z=10(x-1)+2(y-2)+5
\end{aligned}
$$

b)

$$
\begin{aligned}
& L(x, y)=10(x-1)+2(y-2)+5 \\
& L(1.2,2.1)=10(1.2-1)+2(2.1-2)+5= \\
& 2+0.2+5=7.2
\end{aligned}
$$

2. (15 pt) Find the critical points of the function

$$
f(x, y)=x^{4}+2 y^{2}-4 x y
$$

For each critical point, use the second derivative test to classify it as either a local minimum, a local maximum, or a saddle point.

$$
\begin{aligned}
& f_{x}=4 x^{3}-4 y=0 \quad f_{y}=4 y-4 x=0 \\
& x=y
\end{aligned}
$$

$$
\begin{gathered}
4 y^{3}-4 y=0 \\
y^{3}-y=0 \\
y\left(y^{2}-1\right)=0
\end{gathered}
$$

$y=0$ or $y= \pm 1$
if $y=0, x=0$
if $y=1, x=1$
if $y=-1, x=-1$
critical points

$$
\begin{aligned}
& (0,0),(1,1),(-1,-1) \quad f_{x y}=4 \\
& f_{x x}=12 x^{2} \quad f_{x y}=-4 \quad f_{y y}=16=48 x^{2}-16 \\
& D(x, y)=12 x^{2} \cdot 4-16 \quad \text {-saddle point } \\
& D(0,0)=-16 \quad f_{x x}(1,1)=12 \cdot 1^{2}>0, \text { local } \\
& D(1,1)=48-16>0 \quad \text { min } \\
& D(-1,-1)=48-16>0 \quad f_{x x}(-1,-1)=12(-1)^{2}>0, \\
& 10 c a l \text { hin }
\end{aligned}
$$

3. ($\mathbf{1 0} \mathbf{p t}$) Use Lagrange multipliers to find the absolute maximum and minimum of

$$
f(x, y)=x^{2}+y^{2}-2 x+4 y+5
$$

subject to the constraint

$$
x^{2}+y^{2}=1
$$

Solution: We have: $\nabla f=\langle 2 x-2,2 y+4\rangle$ and $\nabla g=\langle 2 x, 2 y\rangle$. Therefore, the system is:

$$
2 x-2=\lambda \cdot 2 x \quad 2 y+4=\lambda \cdot 2 y \quad x^{2}+y^{2}=1
$$

from which we get::

$$
2 x-2 \lambda x=2 \quad 2 y-2 \lambda y=-4
$$

or

$$
x=\frac{1}{1-\lambda} \quad y=-\frac{2}{1-\lambda}
$$

If we plug into the third equation, we get:

$$
\frac{4}{(1-\lambda)^{2}}+\frac{1}{(1-\lambda)^{2}}=1
$$

which can be easily solved to yield $\lambda=1 \pm \sqrt{5}$.
If $\lambda=1-\sqrt{5}$, then $x=\frac{1}{1-(1-\sqrt{5})}=\frac{1}{\sqrt{5}}$ and $y=-\frac{2}{1-(1-\sqrt{5})}=-\frac{2}{\sqrt{5}}$
If $\lambda=1+\sqrt{5}$, then $x=\frac{1}{1-(1+\sqrt{5})}-=\frac{1}{\sqrt{5}}$ and $y=-\frac{2}{1-(1+\sqrt{5})}=\frac{2}{\sqrt{5}}$
The maximum occurs at $\left(\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right)$ with $f\left(\frac{1}{\sqrt{5}},-\frac{2}{\sqrt{5}}\right)=6+2 \sqrt{5}$.
The minimum occurs at $\left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$ with $f\left(-\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)=6-2 \sqrt{5}$.
4. (15 pt) Compute the integral of $f(x, y)=x$ over the region R bounded by the parabolas $y=x(3-x)$ and $y=x(x-3)$.

$$
\begin{aligned}
& \iint_{R} x d A=\int_{0}^{3} \int_{x^{2}-3 x}^{3 x-x^{2}} x d y d x= \\
& \left.\int_{0}^{3} x y\right|_{x^{2}-3 x} ^{3 x-x^{2}} d x=
\end{aligned}
$$

5. (10 pt) Compute the following integral by changing the order of integration:

$$
\int_{0}^{1} \int_{y}^{1} \cos \left(x^{2}\right) d x d y
$$

$$
\begin{aligned}
& R=\{(x, y) \mid 0 \leq y \leq 1, y \leq x \leq 1\} \\
& R=\{(x, y) \mid 0 \leq x \leq 1,0 \leq y \leq x\}
\end{aligned}
$$

$$
\begin{gathered}
\int_{0}^{1} \int_{y}^{1} \cos \left(x^{2}\right) d x d y=\int_{0}^{1} \int_{0}^{x} \cos \left(x^{2}\right) d y d x= \\
\left.\int_{0}^{1} y \cos \left(x^{2}\right)\right|_{0} ^{x} d x=\int_{0}^{1} x \cos \left(x^{2}\right) d x \\
u=x^{2} \quad d u=2 x d x \\
\text { if } x=0 \quad \text { then } u=0 \\
x=1 \quad u=1 \\
\int_{0}^{1} x \cos \left(x^{2}\right) d x=\frac{1}{2} \int_{0}^{1} \cos u d u= \\
\left.1 \frac{1}{2} \sin u\right|_{0} ^{1}=\frac{1}{2}(\sin 1-\sin 0)= \\
\frac{1}{2} \sin 1
\end{gathered}
$$

6. (10 pt) Compute the double integral $\iint_{R} e^{x^{2}+y^{2}} d A$ where R is the disc of radius \mathbb{Z} centered at $(0,0)$.

$$
\begin{gathered}
R=\{(r, \theta) \mid 0 \leq \theta \leq 2 \pi, 0 \leq r \leq 2\} \\
r^{2}=x^{2}+y^{2} \\
\iint_{R} e^{x^{2}+y^{2}} d A=\int_{0}^{2 \pi} \int_{0}^{2} r e^{r^{2}} d r d \theta= \\
u=r^{2} \quad d u=2 r d r
\end{gathered}
$$

$$
\begin{gathered}
R=r^{2} \quad d u=2 r d r \\
\text { if } \begin{array}{c}
\quad d=0 \quad \text { then } \quad u=0 \\
r=2 \\
\frac{1}{2} \int_{0}^{2 \pi} \int_{0}^{4} e^{u} d u d \theta=\left.\frac{1}{2} \int_{0}^{2 \pi} e^{4}\right|_{0} ^{4} d \theta= \\
\frac{1}{2} \int_{0}^{2 \pi} e^{4}-e^{0} d \theta=\left.\frac{1}{2}\left(e^{4}-1\right) \theta\right|_{0} ^{2 \pi}= \\
\pi\left(e^{4}-\cdots\right)
\end{array}
\end{gathered}
$$

7. (10 pt) Write down an iterated integral for the triple integral $\iiint_{D} x d V$, where D is the tetrahedron formed by the coordinate planes and the plane $x+2 y+2 z=4$. DO NOT evaluate the integral.

$$
\iint_{0} \int_{D} x d V=\int_{0}^{2} \int_{0}^{4-2 y} \int_{0}^{\frac{1}{2}(4-x-2 y)} x d z d x d y
$$

8. (15 pt) Compute the integral

$$
\int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{0}^{y} x d z d y d x
$$

by changing to cylindrical coordinates.

$$
\begin{gathered}
D=\left\{(x, y, z) \mid 0 \leq x \leq 2,0 \leq y \leq \sqrt{4-x^{2}},\right. \\
0 \leq z \leq y\} \\
y=\sqrt{4-x^{2}}, \quad y \geq 0, \quad x^{2}+y^{2}=4 \\
D=\left\{(r, 0, z) \left\lvert\, 0 \leq \theta \leq \frac{\pi}{4}\right., 0 \leq r \leq 2,\right. \\
0 \leq z \leq r \sin \theta\}
\end{gathered}
$$

$$
\begin{aligned}
& \int_{0}^{2} \int_{0}^{\sqrt{4-x^{2}}} \int_{0}^{y} x d z d y d x=\int_{0}^{\frac{\pi}{2}} \int_{0}^{2} \int_{0}^{2} \int_{0}^{r \sin \theta} r \cos \theta r d z d r d \theta=
\end{aligned}
$$

