Midterm Exam 2 Duration: 2 hours

Total: 70 points

The following rules apply:

- You are expected to abide by the University's rules concerning Academic Honesty.
- You may *not* use your books, notes, or any electronic device including cell phones.
- You must show all of your work. An answer, right or wrong, without the proper justification will receive little to no credit.
- You must complete your work in the space provided.

Check next to your instructor:

Kobotis	A001	
Lukina @ 11am	B101	
Lukina @ 2pm	B101	
Cole	A001	
Levine	A001	
Steenbergen @ noon	C001	
Steenbergen @ 2pm	C001	
Xie	B101	
Shvydkoy	B101	

Problem	Points	Score
1	10	
2	10	
3 ,	10	
4	10	
5	10	
6	10	
7	10	
Total	70	

(10 pts) **1.** A function z(x, y) is given implicitly by

$$\sin(x+z) + e^{yz} = 1.$$

Use the method of implicit differentiation to evaluate partial derivatives z_x , z_y at the point (0,0,0).

To compute Zx differentiate the equation in X heping in mind that z = z(x,y):

$$\cos(x+z) (1+z_{x}) + yz_{x}e^{y^{2}} = 0$$

$$\frac{z_{x}}{z_{x}} \left[\cos(x+z) + ye^{y^{2}}\right] = -\cos(x+z)$$

$$\frac{\cos(x+z)}{\cos(x+z) + ye^{y^{2}}}$$

Similarly,

$$\cos(x+2) = 0$$

$$\frac{2}{3} \left[\cos(x+2) + y e^{y^2} \right] = - 2 e^{y^2}$$

$$\frac{2}{3} = - \frac{2 e^{y^2}}{\cos(x+2) + y e^{y^2}} .$$

(10 pts) 2. Find an equation of the plane tangent to the surface

$$F = xyz - \ln z = 0$$

at point (0, 1, 1).

$$F_{x} = y^{2}$$
 $F_{y} = x^{2}$
 $F_{z} = x^{2}$

(10 pts) 3. Altitude of a terrain is given by the function

$$A(x, y) = 4 - 2x^2 - y^2 + xy.$$

A hiker standing at the point (1, 1, 2) wants to find the direction of the steepest climb. Find that direction and compute the maximal rate of the climb.

Steepest climb is in the direction of the gradient:

$$A_{x} = -4x + y = -3$$

$$A_{y} = -2y + x = -1$$

$$Rate = |RA| = \sqrt{9+1} = \sqrt{10}$$

(10 pts) 4. Find and classify all critical points of the function

$$f(x,y) = 2x^2 + y^4 - 4xy$$

on the entire plane. Indicate which method you are using.

$$f_x = 4x - 4y = 0 \rightarrow x = y$$

$$f_y = 4y^3 - 4x = 0 \rightarrow y^3 - y = 0$$

$$y(y-1)(y+1) = 0$$

$$y = 0, 1, -1$$

 $x = 0, 1, -1$

$$f_{xx} = 4$$
, $f_{xy} = -4$, $f_{yy} = 12y^2$

We use Second Derivative Test

$$D = 48y^2 - 16$$

1	D	fxx	
(0,0)	-16	4	soddle
(1,1)	32	4	min
(-1,-1)	32	4	min

Name: _____

(10 pts) **5.** Any point P outside of the parabolic cylinder $z=y^2$ has a point on the cylinder closest to P. Let P=(1,0,1). Find a point on the parabolic cylinder closest to P. And compute the minimal distance.

$$f = (x-1)^{2} + y^{2} + (z-1)^{2}$$

$$- square distance$$

$$9 = y^{2} - z = 0$$

$$- constraint$$

$$\nabla f = x^{2}y$$

$$2(x-1) = 0 \qquad \rightarrow x = 1$$

$$2y = 2y \lambda \qquad \rightarrow y = 0 \quad \text{or} \quad \lambda = 1$$

$$2(z-1) = -\lambda$$

$$y^{2} = 2$$

$$(x-1)^{2} + y^{2} + (z-1)^{2}$$

$$- square distance$$

$$- constraint$$

$$2 = 1$$

$$2 = 1$$

$$2 = \frac{1}{2}$$

(1,0,0)

We found 3 critical point:

$$f = 1$$

$$f = \frac{1}{2} + \frac{1}{4} = \frac{3}{4}$$

$$- + \text{this is the smallest}$$

$$\text{value}$$

dist =
$$\sqrt{3}/4$$

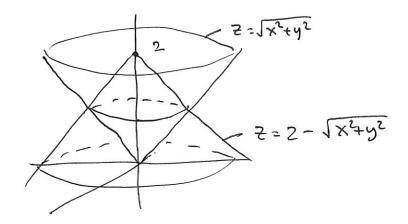
(10 pts) 6. Change the order of integration in the double integral

$$\int_0^{\left(\frac{\pi}{6}\right)^{2/3}} \int_{\sqrt{y}}^{\left(\frac{\pi}{6}\right)^{1/3}} \cos(x^3) \ dx \ dy.$$

Compute the resulting integral.

(10 pts) 7. Compute the volume of the region enclosed between two cones

$$z = \sqrt{x^2 + y^2}$$
 and $z = 2 - \sqrt{x^2 + y^2}$.



In polar coordinates

$$\sqrt{0} = \int_{0}^{2\pi} \int_{0}^{1} r \left(2 - r - r \right) dr d\theta$$

=
$$2\pi \cdot 2 \int_{0}^{1} (r-r^{2}) dr$$

$$= 4\pi \left(\frac{r^2}{2} + \frac{r^3}{3}\right) \Big|_{0}^{1}$$

$$= 4\pi \left(\frac{1}{2} - \frac{1}{3}\right) = \frac{4\pi}{6} = \frac{2\pi}{3}$$