Math 210 — Spring 2015 Name:

Midterm Exam 2
Duration: 2 hours
Total: 70 points

The following rules apply:

e You are expected to abide by the University's rules concerning
Academic Honesty:.

e You may not use your books, notes, or any electronic device
including cell phones.

e You must show all of your work. An answer, right or wrong,
without the proper justification will receive little to no credit.

e You must complete your work in the space provided.

Check next to your instructor:

Kobotis A001 Problem | Points | Score
Lukina @ 11am B101 1 10
Lukina @ 2pm B101 2 10
Cole A001 3. 10
Levine A001 4 10
Steenbergen @ noon | CO01 5 10
Steenbergen @ 2pm | C001 6 10
Xie B101 7 10
Shvydkoy B101 | Total 70
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(10 pts) 1. A function z(x, y) is given implicitly by

sin(x + z) 4+ e = 1.

Use the method of implicit differentiation to evaluate partial derivatives z,, z, at the point
(0,0,0).
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(10 pts) 2. Find an equation of the plane tangent to the surface

—

b = xyz—Inz=0

at point (0,1, 1).
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(10 pts) 3. Altitude of a terrain is given by the function

Alx,y) =4 —2x% — y? + xy.

A hiker standing at the point (1, 1, 2) wants to find the direction of the steepest climb. Find
that direction and compute the maximal rate of the climb.
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(10 pts) 4. Find and classify all critical points of the function

f(x,y) =2x* 4+ y* — 4xy
on the entire plane. Indicate which method you are using.
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(10 pts) 5. Any point P outside of the parabolic cylinder z = y? has a point on the cylinder closest to
P. Let P =(1,0,1). Find a point on the parabolic cylinder closest to P. And compute the
minimal distance.
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(10 pts) 6. Change the order of integration in the double integral

/0(%)2/3 '/\/(j)m cos(x®) dx dy.

Compute the resulting integral.
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(10 pts) 7. Compute the volume of the region enclosed between two cones

Z =

VvVXx2+y?2 and z=2—/x2+ y2.
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