MATH 210 Exam 2 March 22, 2018

Directions. Fill in each of the lines below. Then read the directions that follow before beginning the exam. YOU MAY NOT OPEN THE EXAM UNTIL TOLD TO DO SO BY YOUR INSTRUCTOR.

- All of your work must fit within the boxes on each page for each question. Nothing outside of the box will be graded! If you write outside of the box, there is a good chance that your solution will not be read and therefore not graded.
- A solution for one problem may not go on another page.
- Show all your work. Unjustified answers are not correct. Make clear what your final answer is.
- Have your student ID ready to be checked when submitting your exam.

Lukina	Braithwaite	
Cameron	Kobotis	
Abramov	Shulman	
Heard	Woolf	
Skalit	Freitag	

Check next to your instructor's name:

1. (10pt) Give an equation for the plane tangent to the surface defined by

xy + xz - yz = -1

at the point P(2, -3, 1).

2. (15 pt) Find all critical points of the function

$$f(x,y) = 2xy - 2x^2 - y^3 + 3$$

and classify them using the Second Derivative Test.

3. (15 pt) Let *D* be the half-disk $D = \{(x, y) \mid -2 \le x \le 2, 0 \le y \le \sqrt{4 - x^2}\}$, and let

$$f(x,y) = xy^2 - x.$$

Find the absolute minimum and maximum values achieved by f on D, and the points where they occur.

4. (15 pt) Use the method of Lagrange multipliers to find the maximum and the minimum values of the function

$$f(x,y) = x^2 - y^2$$

on the ellipse $4x^2 + y^2 = 1$.

- 5. (15 pt) Let R be the region in the first quadrant of the xy-plane bounded by the coordinate axes and the line y = 2 x.
 - (a) Sketch R.

(b) Evaluate
$$\iint_R 3x \, dA$$
.

6. (10 pt) Consider the integral

$$\int_0^{\sqrt{\pi}} \int_y^{\sqrt{\pi}} \sin(x^2) \, dx \, dy.$$

- (a) Sketch the region of integration and change the order of integration to dy dx.
- (b) Evaluate the integral (use the order of integration dy dx).

- 7. (15 pt) Consider the quarter-disk $D = \{(x, y) \mid 0 \le x \le 2, 0 \le y \le \sqrt{4 x^2}\}.$
 - (a) Sketch D as a shaded region in the xy-plane.
 - (b) Express D in polar coordinates.

(c) Compute
$$\iint_D 4xy \, dA$$
.

8. (5 pt) Rewrite the following integral in cylindrical coordinates. Do not evaluate the integral.

$$\int_{-1}^{1} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} 2z \, dz \, dy \, dx.$$