Graduate Theoretical Computer Science and Combinatorics Seminar
 On the Problem of Power-Free Subsets
 Stoyan Dimitrov (UIC)

Abstract: In 1965, Paul Erdos easily proved that if S is a finite set of nonzero real numbers, then there exists a sum-free subset $\mathrm{S}^{\prime} \subseteq \mathrm{S}$ such that $\left|\mathrm{S}^{\prime}\right| \geq \frac{1}{3}|\mathrm{~S}|$. Here, a sum-free subset S is such that there is no triple of elements $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in S for which $\mathrm{a}+\mathrm{b}=\mathrm{c}$. Eberhard, Green and Manners proved in 2013 that the same is not true for a constant bigger than $\frac{1}{3}$, i.e. $\frac{1}{3}$ is the biggest possible constant with this property. Here, we consider the analogous problem where triples a, b, c in S for which $\mathrm{a}^{\mathrm{b}}=\mathrm{c}$ are forbidden. We show that $\frac{1}{8}$ is a lower bound for the optimal constant (private communication with Noga Alon), as well as that $\frac{1}{2}$ is an upper bound for it.

