Distinguished Lecture Series

Infinite Necessity

W. Hugh Woodin (Harvard University)

Abstract: The modern mathematical story of infinity began in the period 1879-84 with a series of papers by Cantor that defined the fundamental framework of the subject. Within 40 years the key ZFC axioms for Set Theory were in place and the stage was set for the detailed development of transfinite mathematics, or so it seemed. However, in a completely unexpected development, Cohen showed in 1963 that even the most basic problem of Set Theory, that of Cantor's Continuum Hypothesis, was not solvable on the basis of the ZFC axioms. The now nearly 60 years since Cohen's work has seen a vast development of Cohen's method and the realization that the occurrence of unsolvable problems is ubiquitous in Set Theory. This arguably challenges the very conception of Cantor on which Set Theory is based. Thus a fundamental dilemma has emerged. On the one hand, the discovery, also over the last 60 years, of a rich hierarchy axioms of infinity seems to argue that Cantor's conception is fundamentally sound. But on the other hand, the developments of Cohen's method over this same period seem to strongly suggest there can be no preferred extension of the ZFC axioms to a system of axioms that can escape the ramifications of Cohen's method. But this dilemma was itself based on a misconception and recent discoveries now strongly suggest there is a resolution.

Reception - Details to be announced at the lecture.

Wednesday, April 13 at 4:00 PM in LC D5