Abstract: A complex projective variety X is algebraically hyperbolic if there exists an ample divisor H and a real number $\epsilon > 0$ such that the geometric genus $g(C)$ and the degree of any integral curve $C \subset X$ satisfy the inequality \[2g(C) - 2 \geq \epsilon \deg_H (C). \]

The algebraic hyperbolicity is an important property to characterize varieties of general type, and it is connected to famous conjectures such as the Lang Conjectures and Green-Griffiths Conjecture.

By building on recent work, I classify algebraic hyperbolic hypersurfaces in homogeneous varieties, thus obtaining explicit bounds for the hyperbolicity in plenty of open cases, including Grassmannians, flag varieties, and their products.