Algebraic Geometry Seminar

The non-Lefschetz locus, jumping lines and conics

Emanuela Marangone (Notre Dame)

Abstract: An Artinian Algebra A has the Weak Lefschetz Property (WLP) if there is a linear form, ℓ, such that the multiplication map $\times \ell$ from A_i to A_{i+1} has maximal rank for each integer i. We want to study the set of linear forms for which maximal rank fails, this is called the non-Lefschetz locus and has a natural scheme structure.

An important result by Boij–Migliore–Miro-Roig–Nagel states that for a general Artinian complete intersection of height 3, the non-Lefschetz locus has the expected codimension and the expected degree.

In this talk, we will define in a similar way the non-Lefschetz locus for conics. We say that C, a homogeneous polynomial of degree 2, is a Lefschetz conic for A if the multiplication map $\times C$ from A_i to A_{i+2} has maximal rank for each integer i. We will show that for a general complete intersection of height 3, the non-Lefschetz locus of conics has the expected codimension as a subscheme of \mathbb{P}^5, and that the same does not hold for certain monomial complete intersections.

The study of the non-Lefschetz locus for Artinian complete intersections can be generalized to modules $M = H^1(\mathbb{P}^2, E)$ where E is a vector bundle of rank 2. The non-Lefschetz locus, in this case, is exactly the set of jumping lines of E, and

Monday, September 18 at 3:00 PM in 636 SEO
the expected codimension is achieved under the assumption that E is general.

In the case of conics, the same is not true. The non-Lefschetz locus of conics is a subset of the jumping conics, but it is a proper subset when E is semistable with first Chern class even.