Number Theory Seminar

The distribution in arithmetic progressions of primes of cyclic reduction for elliptic curves

John Sung Min Lee (University of Illinois at Chicago)

Abstract: Given an elliptic curve E/\mathbb{Q} and a prime p of good reduction for E, let \tilde{E}_p denote the reduction of E modulo p. If $\tilde{E}_p(\mathbb{F}_p)$ forms a cyclic group, we call p a prime of cyclic reduction for E. In this talk, we study the issue of which arithmetic progressions $k \pmod{n}$ have the property that, for all but finitely many primes $p \equiv k \pmod{n}$, the group $\tilde{E}_p(\mathbb{F}_p)$ is not cyclic, answering a question of Akbal and G"{u}lo"{u}lu. Also, we show that primes of cyclic reduction are statistically biased modulo n, refining Banks and Shparlinski's results on average density of primes of cyclic reduction. The first part of this talk is a joint work with Nathan Jones.

Friday, September 15 at 1:00 PM in 427 SEO