The distribution in arithmetic progressions of primes of $r - 1$ cyclic components for Drinfeld modules

John Sung Min Lee (University of Illinois at Chicago)

Abstract: Given a prime power q, let $A = \mathbb{F}_q[T]$ and $k = \mathbb{F}_q(T)$. Take a finite extension K/k and ψ a generic Drinfeld A-module over K of rank $r \geq 2$. Given a prime \mathfrak{p} of good reduction for ψ, the reduction $\psi_{\mathfrak{p}}(\mathbb{F}_\mathfrak{p})$ forms a finite A-module of rank at most r. Let us denote the first invariant factor of $\psi_{\mathfrak{p}}(\mathbb{F}_\mathfrak{p})$ by $d_{1,\mathfrak{p}}(\psi)$. Kuo and Liu determined the density of primes of K for which $d_{1,\mathfrak{p}}(\psi) = 1$, given ψ has a trivial endomorphism ring. Cojocaru and Shulman largely generalized their results and determined the density of primes of K for which $d_{1,\mathfrak{p}}(\psi) = d$ without any assumption. In this talk, we add a congruence class condition on their results, i.e., we study the distribution of primes p of k that lie in an arithmetic progression and $d_{1,p}(\psi) = d$.