Mathematical Computer Science Seminar

Total non-negativity of some combinatorial matrices
 David Galvin (Notre Dame)

Abstract: Many combinatorial matrices - such as those of binomial coefficients, Stirling numbers of both kinds, and Lah numbers - are known to be totally non-negative, meaning that all minors (determinants of square submatrices) are non-negative.

The examples noted above can be placed in a common framework: for each one there is a non-decreasing sequence $\left(a_{1}, a_{2}, \ldots\right)$, and a sequence $\left(e_{1}, e_{2}, \ldots\right)$, such that the (m, k)-entry of the matrix is the coefficient of the polynomial $\left(x-a_{1}\right) \cdots\left(x-a_{k}\right)$ in the expansion of $\left(x-e_{1}\right) \cdots\left(x-e_{m}\right)$ as a linear combination of the polynomials $1, x-a_{1}, \ldots,(x-$ $\left.a_{1}\right) \cdots\left(x-a_{m}\right)$.

I'll discuss this general framework, and for a non-decreasing sequence (a_{1}, a_{2}, \ldots) sketch the proof of necessary and sufficient conditions on the sequence $\left(\mathrm{e}_{1}, \mathrm{e}_{2}, \ldots\right)$ for the corresponding matrix to be totally non-negative. I'll derive as corollaries the totally non-negativity of matrices of rook numbers of Ferrers boards, and of a family of matrices associated with chordal graphs.

